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1. Definitions

Let P+(n) (resp. P−(n)) denote the largest (resp. smallest) prime factor

of an integer n with the convention that P+(1) = 1 (resp. P−(1) =∞).

An integer n is said y-friable if P+(n) 6 y.

An integer n is said y-sifted if P−(n) > y.

Canonical representation : n = ab with P+(a) 6 y, P−(b) > y.

Friable integers come up in:

• cryptology

• algorithmic theory

• circle method

• sieve theory

• probabilistic number theory (Kubilius’ model)

• analytic number theory.
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Notation : S(x, y) := {n : P+(n) 6 y}, Ψ(x, y) := |S(x, y)|,
and for f : N∗ → C,

Ψ(x, y; f) :=
∑

n∈S(x,y)

f(n), M(x; f) := Ψ(x, x; f)

ψ(x, y; f) :=
∑

n∈S(x,y)

f(n)

n
.

• Daboussi (1984) : lim sup
x→∞

|M(x)|
x

6
∏
p6y

(
1− 1

p

)∫ ∞
1

|Ψ(x, y;µ)|
x2

dx.

• Johnsen-Selberg : power-sieve in terms of ψ(x, y; f).

Example: h(n) := 1�+�(n),
∑
n6x

h(n) ∼ Cx/
√

log x.

An estimate for suitable ψ(x, y; f) by T-Wu (2008) implies∑
X<n6X+N

h(n) 6
{
π + o(1)

}
CN/

√
logN (N →∞).
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2. Available general results

2·1. Via local behaviour

ζ(s, y) :=
∑

P+(n)6y

1

ns
=
∏
p6y

(
1− 1

ps

)−1
, ϕy(s) := log ζ(s, y).

α = α(x, y) solution of −ϕ′y(α) = log x.

Hildebrand-T (1986) : For x > y > 2, u := (log x)/ log y, we have

Ψ(x, y) =
xαζ(α, y)

α
√

2πϕ′′y(α)

{
1 +O

( 1

u
+

log y

y

)}
La Bretèche-T (2005, 2017) various estimates of the shape

Ψ(x/d, y) = {1 +O(E)}Ψ(x, y)/dα.

∴ f = g ∗ 1⇒ Ψ(x, y; f) ≈ Ψ(x, y)
∑

d∈S(x,y)

g(d)

dα
.

Effective essentially when g small or > 0, hence f > 0.
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Examples (La Bretèche-T, 2005): uniformy for x > y > 2, we have

(i) κ(n) :=
∑
p|n log p:

Ψ(x, y;κ)

Ψ(x, y)
∼ y log x

y + log x
,

(ii)
Ψ(x, y,Ω− ω)

Ψ(x, y)
∼
∑
p6y

1

pα(pα − 1)

[
→∞⇔ y 6 (log x)2+o(1)

]
.

Sharpest version of local behaviour (La Bretèche-T, 2017) include first

order remainder and coprimality conditions.

2·2. Via mean-value estimates for f(p)

• T-Wu (2003) : f > 0, κ > 0, and

(∗)
∑
p6z f(p) log p = κz +O

( z

R(z)

)
, R(z)→∞,

∫ ∞
1

dv

vR(v) log v
<∞.

Then Ψ(x, y; f) = Cκ(f)x%κ(u)(log y)κ−1
{

1 +O(E)
}

.

Here Cκ(f) :=
∏
p(1− 1/p)κ

∑
ν>0 f(pν)/pν and %κ = %∗k.

Error term and validity domain depend on R.

For R(z) = (log z)c, c > 1, then E = o(1) if log y > (log x log2 x)2/(3+c).
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Hypotheses allow F(s) :=
∑

P+(n)6y

f(n)

ns
≈ Cζ(s, y)κ only for s = ακ + iτ

where ακ = saddle-point associated to ζ(s, y)κ bounded τ .

Need to: (a) exploit multiplicativity to link Ψ(x, y; f) to ψ(x, y; f),

(b) get sharp upper bounds,

(c) use an idea of Landau to approximate ψ(x, y; f) by a Perron

integral on a bounded segment.

For b < 3/2, sy := (s− 1) log y, we have

ζ(s, y) ≈ ζ(s)sy%̂(sy)
(
σ > 1− 1/(log y)2b/3, |τ | 6 e(log y)

b)
.

Note: %̂κ(s) = %̂(s)κ,

v%′κ(v)− (κ− 1)%κ(v) + κ%κ(v − 1) = 0 (v > 1),

%κ(v) = vκ−1/Γ(κ) (0 < v 6 1).

General theory, Hildebrand-T (1993):

asymptotic, convergent expansion on a “basis” of fundamental solutions.
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• T-Wu (2008) :

f > 0,

(∗∗)
∑
p6z

f(p)(log p)

p
− κ log z � 1.

ψ∗(x, y; f) :=
∑
n>x

P+(n)6y

f(n)

n
=
{

e−γκ +O(E)
}∏
p6y

∑
ν>0

f(pν)

pν

∫ ∞
u

%κ(v) dv

where E = o(1) if
log y√

log x log2 x
→∞,

∑
p

f(p)2(log p)2

p2
<∞.

Under stronger hypotheses such as estimates on
∑
p6z f(p) log p, domain

and accuracy may be significantly improved.

However (∗∗) is adapted to sieve theory.
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2·3. Via assumptions on associated Dirichlet series

Hanrot–GT-Wu (2006). F(s) =
∑
n>1

f(n)

ns
=
∏

16j6r

ζKj (s)
κjG(s), 0 < β < 3

5 .

G(1) 6= 0, G(s)� (1 + |τ |)1−δ
(
σ > 1− c

{log(3 + |τ |)}(1−β)/β
)
.

Ψ(x, y; f) =
{

1 +O
(
E
)}
x

∫
R
zκ(u− v) d

(
M(yv; f)

yv

) (
log y > (log x)1−β

)
ẑκ(s) = sκ−1%̂κ(s),

vz′κ(v) = −κzκ(v − 1) (v > 1), zκ(v) = 1 (0 6 v 6 1).

If κ ∈ N∗, the domain may be enlarged to log y > (log2 x)1/β .

Abstract main term (introduced by de Bruijn): useful for re-summations.
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For instance, T-Wu (2008):∑
n6x

f(n){logP+(n)}r = x(log x)κ+r−1
{ ∑

06j6J

aj(f)γj(κ, r)

(log x)j
+O
(
RJ(x)

)}
,

RJ(x) := e−(log y)
β/(1+β)

+
(c1J + 1)(J+1)/β

(log x)J+1
,

γj(κ, r) explicit in terms of %κ,

sκF(s+ 1)/(s+ 1) =:
∑
j>0 aj(f)sj (|s| < c).
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Expansion of main term x
∫
R zκ(u− v) d

(
M(yv; f)/yv

)
: ∀J ∈ N and if

(DJ(y)) 0 < u < J + 2⇒ 〈u〉 > εJ,y := {(2J + 2) log2 y}1/β/ log y,

Ψ(x, y; f) = x
∑

06j6J

aj(f)
%
(j)
κ (u)

(log y)j
+O

(
x%κ(u)

{ log(u+ 1)

log y

}J+1
)

whenever u 6

{
(log y)(1−β)/β (κ /∈ N)

exp{(log y)1/β} (κ ∈ N).

Example: F ∈ Z[X], δF (n) :=

{
1 if ∃m ∈ Z/nZ : F (m) = 0,

0 otherwise.

Ψ(x, y; δF ) ≈ x(log y)κF−1
∑
j>0

aj(δF )%
(j)
κF (u)

(log y)j

if F (X) = X3 −X − 1, κF = 5/6,

if F (X) = (X2 − 2)(X2 − 3)(X2 − 6), κF = 1,

if F = Φν , κF = 1/ϕ(ν).
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For κ ∈ N∗, main term is obtained by writing the Taylor expansion

of zκ(u − v) taking the discontinuities into account and estimating the

coefficients using the fact that
∫
R v

j d
(
M(yv; f)/yv

)
converge for every j.

When κ ∈ R+ rN, ϑ := 〈κ〉 6= 0, one has to study

µκ(v) :=
1

Γ(1− ϑ)

∫ v+

0

M(ew; f)

ew(v − w)ϑ
dw (v ∈ R).

Difficulty: show that, with ν := bκc, we have

µκ(v) =
∑

06j6ν

aν−j(f)
vj

j!
+O

(
e−v

β)
(v > 0).
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3. New results: oscillating functions

Joint work with la Bretèche (2022).

Dirichlet series F(s) = ζ(s)−κB(s) with κ > 0,

B conveniently majorized and has holomorphic continuation to

σ > 1− c/ log(3 + |τ |)}(1−β)/β for some β < 3/5.

Ψ(x, y; f) =
1

2πi

∫ σ+i∞

σ−i∞

B(s, y)xs

sζ(s, y)κ
ds.

Under suitable conditions B(s) ≈ B(s, y).

Moreover ζ(s, y) ≈ ζ(s)sy%̂(sy) with sy = (s− 1) log y.

Let hκ = z−κ: vh′κ(v) = κhκ(v − 1) (v > 1) and hκ(v) = 1 (0 6 v 6 1).

Then ĥκ(s) = 1/{sκ+1%̂(s)κ}. Moreover

(s− 1)F(s)

s
=

∫ ∞
0

e−v(s−1) d
(M(ev; f)

ev

)
=

∫ ∞
0

e−vsy d
(M(yv; f)

yv

)
.
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Hence syB(s)ĥκ(sy)/{sζ(s)κ} is the Laplace transform of

Jy(t) := et
∫ ∞
0

hκ

( t

log y
− v
)

d
(M(yv; f)

yv

)
.

Therefore, it expected that

(∗)
Ψ(x, y; f) ≈ 1

2πi

∫ σ+i∞

σ−i∞

B(s)xs

sζ(s, y)κ
ds

≈ Jy(log x) = x

∫ ∞
0

hκ(u− v) dµf,y(v),

with µf,y(v) := M(yv; f)/yv.

This estimate may indeed be derived by the relevant saddle-point method.

However the saddle-point equation fails to have a real solution.

We have to choose the integration abscissa equal to the real part of the

two solutions closest to the real line.

Involved error in (∗) is � xe−(log y)
β

.
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Approximation of main term.

Case κ ∈ N∗: Taylor expansion of hκ(u − v) taking account of the

discontinuities and exploit

aj−κ−1(f)

(log y)j
=

(−1)j

j!

∫ ∞
0

vj dµf,y(v) (j > 0),

where now F(s+ 1)/{sκ(s+ 1)} =:
∑
j>0 aj(f)sj (|s| < c).

Under condition DJ+κ(y)—〈u〉 not too close to 0 for u 6 J + κ—we get

Ψ(x, y; f) = x
∑

06j6J

aj(f)h
(κ+j+1)
κ (u)

(log y)κ+j+1
+O

(
xRκ(u)(log 2u)J+1

(log y)κ+J+2

)
where Rκ(v) = %κ(v)e−{1+o(1)}π

2v/2(log v)2 .
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Precise description of h
(j)
κ available from Hildebrand-T (1993).

We have

h(κ+j)κ (v) = δ0je
−γκ +O(Rκ(v))

and an asymptotic series in terms of fundamental solutions may be substi-

tuted to the right-hand side.

When u 6 J + κ and 〈u〉 is so small that DJ+ν(κ) does not hold, some

extra terms should be added to the main term of the asymptotic formula for

Ψ(x, y; f): these are � e−(log(x/y
`))β where ` := buc.

When κ 6∈ N∗, the situation becomes much more delicate.

Taylor expansion of hκ(u− v) is inefficient :

(a) the integrals
∫
vj dµf,y(v) do not converge for large j

(b) asymptotic formula M(yv; f) ≈ yv/(v log y)κ+1 cannot be exploited

for small j.
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Recall the approximation of the integrand of Perron’s formula:
F(s)

ssκy %̂(sy)κ
·

Let ν := bκc, ϑ := 〈κ〉 = κ− ν > 0. We rewrite the above as

syF(s)

ssϑy

1

sν+1
y %̂(sy)κ

=: Ẑy(s)ϕ̂κ(s).

vϕ′κ(v) + ϑϕκ(v)− κϕκ(v − 1) = 0 (v > 1), ϕκ(v) =
v−ϑ

Γ(1− ϑ)
(0 < v 6 1).

ϕ
(j)
κ has essential discontinuities at {0, 1, . . . , j}.

General theory still relevant.
All estimates expressed in terms of ψκ := ϕ

(ν)
κ .

This function and all its derivatives are over-exponentially decreasing.
The main difficulty: getting suitable upper bounds for (integrals of) Zf,y.
For u = (log x)/ log y ∈ DJ+ν(κ, y), we get

Ψ(x, y; f) = x
∑

06j6J

aj(f)ψ
(j+1)
κ (u)

(log y)κ+j+1
+O

(
xRκ(u)(log 2u)J+1

(log y)κ+J+2

)
.
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When u 6∈ DJ+ν(y) and κ ∈ N∗, some definite quantities � e−(log(x/y
`))β

with ` := buc must be added to the main term.

When u 6∈ DJ+ν(κ, y), ` < u 6 `+1, ` 6 J+ν+1, and κ ∈ R+rN∗, formula

must be modified by restricting the summation to the (possibly empty) range

0 6 j 6 `−ν−2 and adding other rapidly decreasing quantities to the main

term.

Above results generalise the case κ = 1 handled in T. (1990) and improve

precision.

We thus get, for any given r < 3/2, m := min(buc , κ+ 1).

Ψ(x, y; f)� Ψ(x, y; τκ)
{ e−cu/(log 2u)2

(log y)κ+m−1
+ e−(log y)

r
}
.

Erdős had conjectured Ψ(x, y;µ)/Ψ(x, y) → 0, proved by Alladi (1982)

and Hildebrand (1984, 1987).
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4. Applications

4·1. Weighted averages

For 0 < β < 3/5, J ∈ N, f as above, and e(log x)
β

6 y 6 x, u ∈ DJ+ν(y),

m(x, y; f) :=
∑

n∈S(x,y)

f(n)

n
=

∑
06j6J

a∗j (f)ψ
(j)
κ (u)

(log y)κ+j
+O

(
Rκ(u)(log 2u)J

(log y)J+κ+1

)
,

with a∗j (f) := aj(f) + aj−1(f) (j > 0).

4·2. Truncated multiplicative functions

Define fy(pν) = f(pν) (p 6 y), := 1 (p > y).

With g := f ∗ µ (associated to ζ(s)−κ−1), we have

M(x; fy) =
∑

n∈S(x/z,y)

g(n)
⌊x
n

⌋
+
∑
d6z

M
(x
d
, y; g

)
−M

(x
z
, y; g

)
bzc.
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Let DJ(b, y) :=
{
u > 1 : min16j<min(u,J+1)(u− j) > 1/(log y)b

}
.

Using the results previously described, we obtain that for

0 < β < 1/2, log y > (log x)1−β , b :=
1− 2β

1− β
, J > 0, u ∈ DJ+ν+1(b, y),

we have

M(x; fy) = x
∑

06j6J

aj(f)ψ
(j)
κ+1(u)

(log y)κ+j+1
+O

(
xRκ(u)(log 2u)J+1

(log y)J+κ+2

)
.

In special case f(n) := (−k)ω(n), k ∈ N∗, this improves on Alladi-Goswami

(2022) who had β arbitrarily small and only the dominant term in the

expansion.

For this function we have a0(f) = 0 whenever k = p+ 1 for some prime p

and so the first term of the expansion vanishes in this case.


