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1.

N(σ,T ) :=
∑

%=β+iγ; ζ(%)=0
β≥σ, 0<γ<T

1, ζ(s) =
∞∑
n=1

1
ns
.

First density theorem

Carlson (1920): N(1− η,T )�ε T
4η(1−η)+ε for η < 1/2.

Significance: N(1 − η,T ) �ε TAη+ε ⇒ pn+1 − pn �
n1−1/A+ε.

Best conjecture: Density Hypothesis ⇐⇒ A = 2.

Best result Huxley (1972): A = 12/5.
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First proof of the Density Hypothesis for some interval
c0 ≥ η ≥ 0:

Theorem A (Halász–Turán, 1969, improved form in Turán’s
book).

(1.1) N(1− η,T )�ε T
Aη3/2

logc T , A = 12.000.

Main ideas of the proof:
(1.2)

(i) ζ(1−η,T )� TBη3/2
logc T ;

(ii) Turán’s power-sum method;
(iii) an idea of Halász.
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Different proofs (by large sieve + Halász’ idea, avoiding
Turán’s method) were given by Montgomery and Bombieri.

Montgomery: A =
40
3
B can be chosen in (1)–(2).

Richert (1967): B = 100 =⇒ A = 4000/3 + ε.

Ford (2000): B = 4.45 =⇒ A = 58.05

Heath-Brown (2017): A = 6.42 for η ≤ 1/10, A = 5.03 for
η < η0 if logc T is substituted by T ε in (1.1).

4 / 25



4

The proof is based on a new form of Vinogradov’s mean value
theorem proved by Wooley and Bourgain, Demeter and Guth
(2016).

Various explicit zero density theorems for σ near to 1 (i.e. for
small values of η = 1− σ) were proved by Ivič, Jutila,
Heath-Brown, Huxley, Bourgain, of the form

N(1− η,T )� TA(η)η logc T or(1.3)

N(1− η,T )�ε T
A′(η)η+ε,(1.4)
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for example,

(1.5) Ivič (1979): A(η) = 35/36 if η < 3/155,

(1.6) Bourgain (1995): A′(η) = 4
/

(5−30η) for η < 1/16,

(1.7)
Bourgain (1995): A′(η) = 2

/
(2−7η) for 1/16 ≤ η ≤ 2/19.
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2.

We will sketch the proof of a theorem which

(a) improves the result of Bourgain for η < 1/20;
(b) gives an explicit zero-density estimate of type (1.3) for

every η < 1/12 (with different forms of A(η) in different
intervals);

(c) improves the Halász–Turán type density theorems of
Heath-Brown.

Notation: For k ≥ 4, ` ≥ 3,
(2.1)

I (k , `) :=

[
1

2`(` + 1)
,

1
2`(`− 1)

)⋂[
1

k(k + 1)
,

1
k(k − 1)

)
.
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Remark 1. In Theorem 7 and Corollaries 1–2 the constant in
the � sign may depend on η.

Theorem 1. The density estimate (1.3) holds for η ∈ I (k , `)

with
(2.2)

A′(η) = max
{

3
`(1− 2(`− 1)η)

,
4

k(1− (k − 1)η)

}
if η < 1/12.

Remark 2. Since the first term is larger for most values of η:

Theorem 1’

If η < 1/12, η /∈ [1/42, 1/40], η ∈ [1/2`(` + 1), 1/2`(`− 1)]

then

(2.3) A′(η) =
3

`(1− 2(`− 1)η)
.
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Corollary 1. The density estimate (1.3) holds for η ∈ I (k , `)

with

(2.4) A′(η) = max
{

3
`− 1

,
4

k − 1

}
if η < 1/12.

Corollary 2. If ε > 0 then N(1− η,T )�ε T
(3
√

2+ε)η3/2+ε if
η < η0(ε) is sufficiently small.
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3. Main ingredients of the proof

(a) Exponential sum estimates of Heath-Brown [Hea] which
appeared in Proc. Steklov Institute, 2017. These are based on
an (essentially) optimal form of Vinogradov’s mean-value
theorem proved by Wooley and Bourgain, Demeter and Guth
(2016).
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Theorem 1 of [Hea]. Let k ≥ 3 be an integer,
f (x) : [0,N]→ R having continuous derivation of order up to
k on (0,N) with

(3.1) 0 < λk ≤ f (k)(x) ≤ Akλk , x ∈ (0,N).

Then (with e(x) = e2πix)

1
N

∑
n≤N

e(f (n))

(3.2)

�A,k,ε N
ε
(
λ

1/k(k−1)
k + N−1/k(k−1) + N−2/k(k−1)λ

−2/k2(k−1)
k

)
.
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Theorem 5 of [Hea]. For t ≥ 1 and 1/2 ≤ σ ≤ 1 we have
with κ = 8

√
15
/
63 = 0.4918 . . .

(3.3) ζ(σ + it)�ε t
κ(1−σ)3/2+ε.

(b) A simple but ingenious idea of Halász.

(c) We will also use a method used originally to show

|M(X )| =

∣∣∣∣∑
n≤X

µ(n)

∣∣∣∣ ≥ c0

√
X for X > X0 effectively.
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Corollary I of Theorem 1 of [Hea]. If I (N) ⊂ [N , 2N),
t ∈ [3,T ], r ≥ 2
(3.4)
|t|2/r � N ≥ Nr (ξ,T ) := T 1/r(1−(r−1)ξ−6rε), ξ ≤ 1/r(r−1)−6ε,

then

(3.5)
∑

n∈I (N)

n−(1−ξ)+it �ε,r T
−ε.
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Theorem II.2 of [HLM]. If s = σ + it, σ ≥ 1− ξ, ξ > 0,
−ξ < θ ≤ 1 then

∞∑
n=1

(
e−n/2N − e−n/N

)
n−s(3.6)

� Nθ−1+ξ max
σ′≥θ,1<|t′|≤2|t|

|ζ(σ′ + it ′)|+ Nξe−|t|.

This is Theorem II.2 in the Appendix of Montgomery’s book.

14 / 25



14

4. Sketch of proof of Theorem 1

Let us consider the zeros %j = βj + iγj with
βj = 1− ηj ≥ σ := 1− η, 2 logT < |γj | ≤ T

(j = 1, 2, . . . ,K ), and let us choose with a sufficiently small
ε > 0

(
ε < ε0(k , `, η)

)
, T > T0(ε)

X := T ε, Y := T 2/k , Y1 := Ye3, λ = logY , L = logT ,

(4.1)

MX (s) :=
∑
n≤X

µ(n)

ns
,

an :=
∑

d |n,d≤X

µ(d), N∗k (T ) = XNk(ξ,T ).
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Let

Ij :=
1
2πi

∫
(3)

∞∑
n=1

an
ns+%j

es
2/λ+λs

s
ds

(4.2)

=
1
2πi

∫
(3)

MX (s + %j)ζ(s + %j)
es

2/λ+λs

s
ds

=
1
2πi

∫
(−η)

MX (s + %j)
ζ(s + %j)

s
es

2/λ+λsds

=
1
2π

2λ∫
−2λ

MX (1−η−ηj +i(γj + t))·

· ζ(1−η−ηj +i(γj +t))

−η + it
e(−η+it)2/λY −η+itdt + O

(
1
Y 3

)
.
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Shifting the part of the series
∑
n

ann
−(s+%j ) with n ≥ Y1 (i.e.

λ− log n ≤ −3) from Re s = 3 to Re s = λ and the finite
part n ∈ (X ,Y1) to Re s = 1/λ, the term n = 1 to
Re s = −4 we obtain
(4.3)

Ij = 1+
∑

X<n<Y1

ann
−%j 1

2πi

1/λ+2iλ∫
1/λ−2iλ

es
2/λ+(λ−log n)s

s
ds+O

(
1
Y 3

)
.
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The RHS of (4.2), the estimation (3.3) for the zeta-function
imply

(4.4) Ij � T ε+κ(2η)3/2 · Y −η � T 10−4η/k ,

since
√
η ≤ 2

/√
5k by η ≤ 1

/
k(k − 1).

The formulae (4.1)–(4.3) imply that with a suitable choice of
γ∗j ∈ (γj − 2λ, γj + 2λ) we have with %∗j = 1− (ηj − 1/λ) + iγ∗j

(4.5) I ∗j :=
∣∣∣ ∑
X<n<Y1

ann
−%∗j
∣∣∣ > 1/2λ (j = 1, 2, . . .K ).
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We will select a subset of {%∗j } with K ′ � K/λL elements and
|γ∗ν − γ∗κ| > 2λ. Furthermore, we divide an for all n ∈ (X ,Y1)

into two parts (for Nk(T ) = Nk(η,T ) see Corollary I):

(4.6) a′n =
∑
d ,m

dm=n
m>Nk (T )

d≤X

µ(d), a′′n =
∑
d ,m

dm=n
m≤Nk (T )

d≤X

µ(d), an = a′n +a′′n.
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By (3.5) we obtain∑
X<n<Y1

a′nn
−%∗j =

∑
d≤X

µ(d)d−%
∗
j

∑
X/d<m<Y1/d

m>Nk (T )

m−%
∗
j(4.7)

�k,ε XT
−2ε = T−ε.

By (4.5) and (4.7) we have a U ∈ (X ,Nk(T )X ) such that for
some I (U) ⊂ [U , 2U] and with a′′n in (4.6)

(4.8)
K ′

3λ2 ≤
K ′∑
ν=1

∣∣∣ ∑
n∈I (U)

a′′nn
−%∗ν
∣∣∣ =:

K ′∑
ν=1

∣∣∣∑
ν

∣∣∣.
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Let U = T u. An easy calculation shows
(4.9)
U≤XNk(T )=Nk(T )T ε⇒u≤u(`, η) := 1

/
`(1−2η(`−1)−6`ε).

If u > u(`, η)
/
2 we raise Σν to the 2nd power,

U2 ≤ N2
k (T )T 2ε. If u ≤ u(`, η)

/
2 we raise Σν to the hth

power such that

(4.10) hu ∈
[
u(`, η), (3/2)u(`, η)

]
=: J`(η).

Σh
ν runs from Ah to Bh where Uh ≤ Ah ≤ Bh ≤ (2U)h.
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We will denote the resulting coefficients after taking hth power
of
∑

ν (where now h ∈ [2, 20/ε)) by a
(h)
n = bn and will find αν

(ν = 1, 2, . . . ,K ′) with |αν | = 1 satisfying

(4.11)
∣∣∣∑h

ν

∣∣∣ =
∣∣∣ ∑
Ah≤n≤Bh

bnn
−%∗ν
∣∣∣ = αν

∑
Ah≤n≤Bh

bnn
−%∗ν .
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Using Halász’ idea, after taking the hth powers of
∑

ν we
square both sides and by the Cauchy–Schwarz inequality we
get

(K ′)2

L2h �ε

( ∑
Ah≤n<Bh

|bn|2

n

)( ∑
Ah≤n<Bh

K ′∑
ν,κ=1

ανακ
1

n1−ην−ηκ+i(γ∗ν−γ∗κ)

)(4.12)

� Lc(ε)
{
K ′(K ′ − 1)T−ε + K ′B2η

h

}
by 2`(`− 1)η < 1. The crucial estimate T−ε for the
exponential sum in the second factor follows from (3.5) if for
the corresponding pair (ν, k) we have Bh ≤

∣∣γ∗ν − γ∗k ∣∣2/`.
Otherwise the same estimate T−ε follows from (3.3) and a
variant of Theorem II.2 of the Appendix of Montgomery’s
book (cf. (3.6)).
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Hence, using B2 ≤ 4
(
N∗k (T )

)2 and hu ∈ J`(η) we obtain
(4.13)
K ′ � L2c(ε)B2η

h � T η(max(3/`(1−aη(`−1)−2`ε),4/k(1−(k−1)η)−2kε)).

Consequently,

(4.14) K � TA′(η)η+ε.
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Thank you for your attention.
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