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N, T):= Y 1, C(s):Z%.

0=B+iv:((2)=0 n=1
B>0,0<y<T

First density theorem
Carlson (1920):  N(1 —n, T) <. TH=m+e for n < 1/2.

N(]- -1, T) <e TATH—E = Pn+1 — Pn <

Significance: lo1/Ate

Best conjecture:  Density Hypothesis <= A = 2.

Best result Huxley — (1972): A= 12/5.
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First proof of the Density Hypothesis for some interval
co=>n2=>0:

Theorem A (Halasz—Turan, 1969, improved form in Turan's
book).

(1.1)  N1—nT)<. T""log°T, A=12.000.

Main ideas of the proof:

(1.2)
(i) ¢(1-n, T) < TBn*? log” T;
(ii) Turan's power-sum method;
(iii) an idea of Halasz.
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Different proofs (by large sieve + Halasz' idea, avoiding
Turan's method) were given by Montgomery and Bombieri.

40
Montgomery: A = ?B can be chosen in (1)—(2).
Richert (1967): B =100 = A = 4000/3 + ¢.
Ford (2000): B = 4.45 = A = 58.05

Heath-Brown (2017): A = 6.42 for n < 1/10, A = 5.03 for
n < no if log® T is substituted by T¢ in (1.1).
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The proof is based on a new form of Vinogradov's mean value
theorem proved by Wooley and Bourgain, Demeter and Guth
(2016).

Various explicit zero density theorems for o near to 1 (i.e. for
small values of n = 1 — o) were proved by Ivi¢, Jutila,
Heath-Brown, Huxley, Bourgain, of the form

(1.3) N(1—nT)< TADog T or
(1.4) N(L—n, T) <. TAT,
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for example,

(1.5) Ivic (1979): A(n) = 35/36 if n < 3/155,

(1.6) Bourgain (1995): A'(n) =4/(5—30n) for n < 1/16,

(1.7)
Bourgain (1995): A'(n) =2/(2—7n) for 1/16 <n < 2/19.
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2.

We will sketch the proof of a theorem which

(a) improves the result of Bourgain for n < 1,/20;

(b) gives an explicit zero-density estimate of type (1.3) for
every 1 < 1/12 (with different forms of A(n) in different
intervals);

(c) improves the Halasz—Turan type density theorems of
Heath-Brown.

Notation: For kK > 4, ¢ > 3,
(2.1)

1 1 1 L
S P ST 1)) M {k(k+ 1) k(k - 1)) |
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Remark 1. In Theorem 7 and Corollaries 1-2 the constant in

the < sign may depend on 7.

Theorem 1. The density estimate (1.3) holds for n € I(k, ()
with
(2.2)

3 4

A () = max {6(1 30— D) K- (k- 1)77)} <112

Remark 2. Since the first term is larger for most values of 7:

Theorem 1

Ifn<1/12, n ¢ [1/42,1/40], n € [1/2¢(¢ 4+ 1),1/2¢(¢ — 1)]
then

3

(2.3) Al(n) = o1 —2(¢—1)n)
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Corollary 1. The density estimate (1.3) holds for n € I(k, ()
with

(24)  A@y) = max{%,%} ity <1/12

Corollary 2. Ife >0 then N(1 —n, T) <. T@V2tem® 4= jf
n < no(e) is sufficiently small.
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3. Main ingredients of the proof

(a) Exponential sum estimates of Heath-Brown [Hea] which
appeared in Proc. Steklov Institute, 2017. These are based on
an (essentially) optimal form of Vinogradov's mean-value
theorem proved by Wooley and Bourgain, Demeter and Guth
(2016).
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Theorem 1 of [Hea]. Let k > 3 be an integer,

f(x) : [0, N] = R having continuous derivation of order up to
k on (0, N) with

(3.1) 0< M < FO(x) < Ade, x€(0,N).
Then (with e(x) = e*™)

(3.2)
> e(f(n)

Cake N° (Ay K1) k) =27k )2 kz(k‘”) .

w

==
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Theorem 5 of [Hea]. Fort > 1 and1/2 < o <1 we have
with s = 8/15/63 = 0.4918 ...

(3.3) (o + it) <. 710V >te,

(b) A simple but ingenious idea of Halasz.

(c) We will also use a method used originally to show

> p(n)

n<X

IM(X)| = > VX for X > X, effectively.
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Corollary | of Theorem 1 of [Hea]. If I(N) C [N,2N),
tel[3, T, r>2

(3.4)

127> N> N(&, T) = TYr=(r=1e=6re) - e < 1/r(r—1)—6e,

then

(3.5) d oot T
nel(N)
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Theorem 11.2 of [HLM]. Ifs=0+it,c >1-¢, £ >0,
—£ <0 <1 then

(3.6) Z (e_”/2N — e_”/N) n—°
n=1

< NS max |C(of + i) 4+ NeeT It

o/ >0,1<|t'|<2|t|

This is Theorem 11.2 in the Appendix of Montgomery's book.
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4. Sketch of proof of Theorem 1

Let us consider the zeros p; = f3; + i7; with
Bi=1l-n>0:=1-n2logT <|y|<T
(j=1,2,...,K), and let us choose with a sufficiently small
e>0 (e <eo(k,l,n), T> Toe)

(4.1)
X:=T¢, Y:=T¥ Y=Y, A=logV, L=logT,
p(n)
M =
X(S) Z ns )

n<X

api= Y p(d), Ni(T)= XN T).

d|n,d<X
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Let
(4.2)

es 2 /A+)s

' 27r//zn5+91 ds

@ "t
= 5= /Mx s+ 0;)C(s + o))
(3)
/MX S+QJ)C( +QJ) 2/)\+)\st
27r/ s
(=n)

esz/)\Jr)\s

ds

1 .
— o [ M=oy + 1)

—2X

. C(1—77—77j+ (’yj—i_t)) ( n+it)? /Ay = 77+ltdt+ 0

—n+it

1
Y3
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Shlftmg the part of the series Z a,n~(5t%) with n > Yy (i.e.

— logn < =3) from Re s = 3 to Re s = X and the finite
part n € (X, Y1) to Res =1/, theterm n=1 to
Re s = —4 we obtain

(4.3)
1/A+2i\ 23t (rlogn)
- 1 eS —logn)s 1
=1+ Z ann 9127”_ / fds—i—O(\B).
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The RHS of (4.2), the estimation (3.3) for the zeta-function
imply

(4.4) [ < TRy 0 /K

since /77 < 2/V/5k by n < 1/k(k — 1).

The formulae (4.1)—(4.3) imply that with a suitable choice of
7i € (75— 2A, 75 +2)A) we have with of = 1 — (1, — 1/\) + i}

(4.5) I ::‘ Z a,n” %

X<n<Yi

>1/2) (j=1,2,...K).
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We will select a subset of {0} } with K’ > K/AL elements and
|7 — ~%| > 2A. Furthermore, we divide a, for all n € (X, Y7)
into two parts (for Ni(T) = Ni(n, T) see Corollary 1):

(46) a,= > ud), ay= > ud), a,=a,+a,

d,m d,m
dm=n dm=n
m>N(T) m<N(T)
d<X d<X
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By (3.5) we obtain

(4.7) Z a;n_@f = Zu(d)d‘gf Z m 9

X<n<Yy d<X X/d<m<Yi/d
m>Nk(T)

Lpe XT 2 =T7°.

By (4.5) and (4.7) we have a U € (X, Nx(T)X) such that for
some /(U) C [U,2U] and with a/ in (4.6)

Az_212”@“

v=1 nel(U)

(4.8)
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Let U = T". An easy calculation shows
(4.9)
USXN(T)=Nu(T)T* = u<u(l,n) := 1/¢(1-2n({—1)—6L).

If u> u(l,n)/2 we raise T, to the 2" power,
U2 < NZ(T)T?.If u < u(l,n)/2 we raise £, to the ht"

power such that

(410)  hue [u(t.n). (3/2)u(t.n)] = Jn).

Y/ runs from A, to B, where U" < A, < B, < (2U)".
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We will denote the resulting coefficients after taking A*" power
of > (where now h € [2,20/¢)) by ) = b, and will find o,
(v=1,2,...,K’) with |a, | = 1 satisfying

@) 0= S bes=a, Y b

Ap<n<B Ap<n<B
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Using Halasz' idea, after taking the h*™" powers of Y~  we
square both sides and by the Cauchy—Schwarz inequality we
get

(4.12)

Kl
(K')? |bnl? _ 1
W <<8 A Z T A Z Z A Q nlfnufnn‘l’i(’}/;*ﬂ/;:)

h<n<Bp h<n<Bpyv,r=1

< LO{K(K —1)T*+K'B;"}

by 2¢(¢ — 1) < 1. The crucial estimate T ¢ for the

exponential sum in the second factor follows from (3.5) if for
* |2/

’yy - f}/k .

Otherwise the same estimate T ¢ follows from (3.3) and a

the corresponding pair (v, k) we have B, <

variant of Theorem 11.2 of the Appendix of Montgomery's
book (cf. (3.6)).
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Hence, using B, < 4(N,:"(T))2 and hu € Jy(n) we obtain

(4.13)
K’ < EzC(E)B,?" < Tn(max(3/£(l—an(ﬂ—1)—2(5),4/k(1—(k—1)77)—2k£))‘

Consequently,

(4.14) K < TAn+e,
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Thank you for your attention.
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