DENSITY THEOREMS FOR THE RIEMANN ZETA

 FUNCTION IN THE NEIGHBOURHOOD OF THE LINE Re $s=1$JÁNOS PINTZ
RÉNYI INSTITUTE, BUDAPEST
1.

$$
N(\sigma, T):=\sum_{\substack{\varrho=\beta+i \gamma ; \zeta(\rho)=0 \\ \beta \geq \sigma 0<\gamma<T}} 1, \quad \zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} .
$$

First density theorem
Carlson (1920): $\quad N(1-\eta, T) \lll_{\varepsilon} T^{4 \eta(1-\eta)+\varepsilon}$ for $\eta<1 / 2$.
Significance:
$N(1-\eta, T) \ll_{\varepsilon} T^{A \eta+\varepsilon} \Rightarrow p_{n+1}-p_{n} \ll$ $n^{1-1 / A+\varepsilon}$.
Best conjecture: Density Hypothesis $\Longleftrightarrow A=2$.
Best result Huxley
(1972): $A=12 / 5$.

First proof of the Density Hypothesis for some interval $c_{0} \geq \eta \geq 0:$

Theorem A (Halász-Turán, 1969, improved form in Turán's book).
(1.1) $\quad N(1-\eta, T) \lll \varepsilon T^{A \eta^{3 / 2}} \log ^{c} T, \quad A=12.000$.

Main ideas of the proof:
(1.2)
(i) $\zeta(1-\eta, T) \ll T^{B \eta^{3 / 2}} \log ^{c} T$;
(ii) Turán's power-sum method;
(iii) an idea of Halász.

Different proofs (by large sieve + Halász' idea, avoiding Turán's method) were given by Montgomery and Bombieri.
Montgomery: $\quad A=\frac{40}{3} B$ can be chosen in (1)-(2).
Richert (1967): $B=100 \Longrightarrow A=4000 / 3+\varepsilon$.
Ford (2000): $\quad B=4.45 \Longrightarrow A=58.05$
Heath-Brown (2017): $A=6.42$ for $\eta \leq 1 / 10, A=5.03$ for
$\eta<\eta_{0}$ if $\log ^{c} T$ is substituted by T^{ε} in (1.1).

The proof is based on a new form of Vinogradov's mean value theorem proved by Wooley and Bourgain, Demeter and Guth (2016).

Various explicit zero density theorems for σ near to 1 (i.e. for small values of $\eta=1-\sigma$) were proved by Ivič, Jutila, Heath-Brown, Huxley, Bourgain, of the form
(1.3)
$N(1-\eta, T) \ll T^{A(\eta) \eta} \log ^{c} T$ or
(1.4)

$$
N(1-\eta, T) \ll_{\varepsilon} T^{A^{\prime}(\eta) \eta+\varepsilon}
$$

for example,
(1.5) Ivič (1979): $A(\eta)=35 / 36$ if $\eta<3 / 155$,
(1.6) Bourgain (1995): $A^{\prime}(\eta)=4 /(5-30 \eta)$ for $\eta<1 / 16$,
(1.7)

Bourgain (1995): $A^{\prime}(\eta)=2 /(2-7 \eta)$ for $1 / 16 \leq \eta \leq 2 / 19$.
2.

We will sketch the proof of a theorem which
(a) improves the result of Bourgain for $\eta<1 / 20$;
(b) gives an explicit zero-density estimate of type (1.3) for every $\eta<1 / 12$ (with different forms of $A(\eta)$ in different intervals);
(c) improves the Halász-Turán type density theorems of Heath-Brown.

Notation: For $k \geq 4, \ell \geq 3$,
(2.1)
$I(k, \ell):=\left[\frac{1}{2 \ell(\ell+1)}, \frac{1}{2 \ell(\ell-1)}\right) \bigcap\left[\frac{1}{k(k+1)}, \frac{1}{k(k-1)}\right)$.

Remark 1. In Theorem 7 and Corollaries 1-2 the constant in the \ll sign may depend on η.
Theorem 1. The density estimate (1.3) holds for $\eta \in I(k, \ell)$ with
(2.2)
$A^{\prime}(\eta)=\max \left\{\frac{3}{\ell(1-2(\ell-1) \eta)}, \frac{4}{k(1-(k-1) \eta)}\right\}$ if $\eta<1 / 12$.
Remark 2. Since the first term is larger for most values of η :
Theorem 1'
If $\eta<1 / 12, \eta \notin[1 / 42,1 / 40], \eta \in[1 / 2 \ell(\ell+1), 1 / 2 \ell(\ell-1)]$ then
(2.3)

$$
A^{\prime}(\eta)=\frac{3}{\ell(1-2(\ell-1) \eta)} .
$$

Corollary 1. The density estimate (1.3) holds for $\eta \in I(k, \ell)$ with
(2.4) $\quad A^{\prime}(\eta)=\max \left\{\frac{3}{\ell-1}, \frac{4}{k-1}\right\} \quad$ if $\eta<1 / 12$.

Corollary 2. If $\varepsilon>0$ then $N(1-\eta, T) \ll_{\varepsilon} T^{(3 \sqrt{2}+\varepsilon) \eta^{3 / 2}+\varepsilon}$ if $\eta<\eta_{0}(\varepsilon)$ is sufficiently small.
3. Main ingredients of the proof
(a) Exponential sum estimates of Heath-Brown [Hea] which appeared in Proc. Steklov Institute, 2017. These are based on an (essentially) optimal form of Vinogradov's mean-value theorem proved by Wooley and Bourgain, Demeter and Guth (2016).

Theorem 1 of [Hea]. Let $k \geq 3$ be an integer, $f(x):[0, N] \rightarrow R$ having continuous derivation of order up to k on $(0, N)$ with
(3.1) $0<\lambda_{k} \leq f^{(k)}(x) \leq A_{k} \lambda_{k}, \quad x \in(0, N)$.

Then (with $e(x)=e^{2 \pi i x}$)
(3.2)
$\frac{1}{N} \sum_{n \leq N} e(f(n))$
$<_{A, k, \varepsilon} N^{\varepsilon}\left(\lambda_{k}^{1 / k(k-1)}+N^{-1 / k(k-1)}+N^{-2 / k(k-1)} \lambda_{k}^{-2 / k^{2}(k-1)}\right)$.

Theorem 5 of [Hea]. For $t \geq 1$ and $1 / 2 \leq \sigma \leq 1$ we have with $\kappa=8 \sqrt{15} / 63=0.4918 \ldots$
(3.3)

$$
\zeta(\sigma+i t) \lll \varepsilon t^{\kappa(1-\sigma)^{3 / 2}+\varepsilon} .
$$

(b) A simple but ingenious idea of Halász.
(c) We will also use a method used originally to show

$$
|M(X)|=\left|\sum_{n \leq X} \mu(n)\right| \geq c_{0} \sqrt{X} \quad \text { for } \quad X>X_{0} \quad \text { effectively. }
$$

Corollary I of Theorem 1 of [Hea]. If $I(N) \subset[N, 2 N)$, $t \in[3, T], r \geq 2$
(3.4)
$|t|^{2 / r} \gg N \geq N_{r}(\xi, T):=T^{1 / r(1-(r-1) \xi-6 r \varepsilon)}, \quad \xi \leq 1 / r(r-1)-6 \varepsilon$,
then
(3.5)

$$
\sum_{n \in I(N)} n^{-(1-\xi)+i t} \lll \varepsilon, r T^{-\varepsilon}
$$

Theorem II. 2 of [HLM]. If $s=\sigma+i t, \sigma \geq 1-\xi, \xi>0$,
$-\xi<\theta \leq 1$ then
(3.6) $\quad \sum_{n=1}^{\infty}\left(e^{-n / 2 N}-e^{-n / N}\right) n^{-s}$

$$
\ll N^{\theta-1+\xi} \max _{\sigma^{\prime} \geq \theta, 1<\left|t^{\prime} \leq 2\right| t \mid}\left|\zeta\left(\sigma^{\prime}+i t^{\prime}\right)\right|+N^{\xi} e^{-|t|} .
$$

This is Theorem II. 2 in the Appendix of Montgomery's book.

4. Sketch of proof of Theorem 1

Let us consider the zeros $\varrho_{j}=\beta_{j}+i \gamma_{j}$ with
$\beta_{j}=1-\eta_{j} \geq \sigma:=1-\eta, 2 \log T<\left|\gamma_{j}\right| \leq T$
$(j=1,2, \ldots, K)$, and let us choose with a sufficiently small
$\varepsilon>0 \quad\left(\varepsilon<\varepsilon_{0}(k, \ell, \eta)\right), T>T_{0}(\varepsilon)$
(4.1)

$$
\begin{aligned}
X:=T^{\varepsilon}, \quad Y & :=T^{2 / k}, \quad Y_{1}:=Y e^{3}, \quad \lambda=\log Y, \mathcal{L}=\log T \\
M_{X}(s) & :=\sum_{n \leq X} \frac{\mu(n)}{n^{s}} \\
a_{n} & :=\sum_{d \mid n, d \leq X} \mu(d), \quad N_{k}^{*}(T)=X N_{k}(\xi, T)
\end{aligned}
$$

Let
(4.2)

$$
\begin{aligned}
I_{j} & :=\frac{1}{2 \pi i} \int_{(3)} \sum_{n=1}^{\infty} \frac{a_{n}}{n^{s+\varrho_{j}}} \frac{e^{s^{2} / \lambda+\lambda s}}{s} d s \\
& =\frac{1}{2 \pi i} \int_{(3)} M_{X}\left(s+\varrho_{j}\right) \zeta\left(s+\varrho_{j}\right) \frac{e^{s^{2} / \lambda+\lambda s}}{s} d s
\end{aligned}
$$

$$
=\frac{1}{2 \pi i} \int M_{X}\left(s+\varrho_{j}\right) \frac{\zeta\left(s+\varrho_{j}\right)}{s} e^{s^{2} / \lambda+\lambda s} d s
$$

$$
=\frac{1}{2 \pi} \int_{-2 \lambda}^{2 \lambda} M_{X}\left(1-\eta-\eta_{j}+i\left(\gamma_{j}+t\right)\right)
$$

$$
\cdot \frac{\zeta\left(1-\eta-\eta_{j}+i\left(\gamma_{j}+t\right)\right)}{-\eta+i t} e^{(-\eta+i t)^{2} / \lambda} Y^{-\eta+i t} d t+O\left(\frac{1}{Y^{3}}\right)
$$

Shifting the part of the series $\sum_{n} a_{n} n^{-\left(s+e_{j}\right)}$ with $n \geq Y_{1}$ (i.e. $\lambda-\log n \leq-3)$ from $\operatorname{Re} s=3$ to $\operatorname{Re} s=\lambda$ and the finite part $n \in\left(X, Y_{1}\right)$ to $\operatorname{Re} s=1 / \lambda$, the term $n=1$ to
$\operatorname{Re} s=-4$ we obtain
(4.3)
$I_{j}=1+\sum_{x<n<Y_{1}} a_{n} n^{-\varrho_{j}} \frac{1}{2 \pi i} \int_{1 / \lambda-2 i \lambda}^{1 / \lambda+2 i \lambda} \frac{e^{s^{2} / \lambda+(\lambda-\log n) s}}{s} d s+O\left(\frac{1}{Y^{3}}\right)$.

The RHS of (4.2), the estimation (3.3) for the zeta-function imply
(4.4)

$$
I_{j} \ll T^{\varepsilon+\kappa(2 \eta)^{3 / 2}} \cdot Y^{-\eta} \ll T^{10^{-4} \eta / k}
$$

since $\sqrt{\eta} \leq 2 / \sqrt{5} k$ by $\eta \leq 1 / k(k-1)$.
The formulae (4.1)-(4.3) imply that with a suitable choice of $\gamma_{j}^{*} \in\left(\gamma_{j}-2 \lambda, \gamma_{j}+2 \lambda\right)$ we have with $\varrho_{j}^{*}=1-\left(\eta_{j}-1 / \lambda\right)+i \gamma_{j}^{*}$
(4.5) $\quad l_{j}^{*}:=\left|\sum_{x<n<Y_{1}} a_{n} n^{-\varrho_{j}^{*}}\right|>1 / 2 \lambda \quad(j=1,2, \ldots K)$.

We will select a subset of $\left\{\varrho_{j}^{*}\right\}$ with $K^{\prime} \gg K / \lambda \mathcal{L}$ elements and $\left|\gamma_{\nu}^{*}-\gamma_{\kappa}^{*}\right|>2 \lambda$. Furthermore, we divide a_{n} for all $n \in\left(X, Y_{1}\right)$ into two parts (for $N_{k}(T)=N_{k}(\eta, T)$ see Corollary I):
(4.6) $a_{n}^{\prime}=\sum_{\substack{d, m \\ d m=n \\ m>N_{k}(T) \\ d \leq X}} \mu(d), \quad a_{n}^{\prime \prime}=\sum_{\substack{d, m \\ d, m=n \\ m \leq N_{k}(T) \\ d \leq X}} \mu(d), \quad a_{n}=a_{n}^{\prime}+a_{n}^{\prime \prime}$.

By (3.5) we obtain
(4.7) $\sum_{X<n<Y_{1}} a_{n}^{\prime} n^{-\varrho_{j}^{*}}=\sum_{d \leq X} \mu(d) d^{-\varrho_{j}^{*}} \sum_{\substack{x / d<m<Y_{1} / d \\ m>N_{k}(T)}} m^{-\varrho_{j}^{*}}$

$$
<_{k, \varepsilon} X T^{-2 \varepsilon}=T^{-\varepsilon}
$$

By (4.5) and (4.7) we have a $U \in\left(X, N_{k}(T) X\right)$ such that for some $I(U) \subset[U, 2 U]$ and with $a_{n}^{\prime \prime}$ in (4.6)
(4.8) $\quad \frac{K^{\prime}}{3 \lambda^{2}} \leq \sum_{\nu=1}^{K^{\prime}}\left|\sum_{n \in I(U)} a_{n}^{\prime \prime} n^{-o_{\nu}^{*}}\right|=: \sum_{\nu=1}^{K^{\prime}}\left|\sum_{\nu}\right|$.

Let $U=T^{u}$. An easy calculation shows
(4.9)
$U \leq X N_{k}(T)=N_{k}(T) T^{\varepsilon} \Rightarrow u \leq u(\ell, \eta):=1 / \ell(1-2 \eta(\ell-1)-6 \ell \varepsilon)$.
If $u>u(\ell, \eta) / 2$ we raise Σ_{ν} to the $2^{\text {nd }}$ power,
$U^{2} \leq N_{k}^{2}(T) T^{2 \varepsilon}$. If $u \leq u(\ell, \eta) / 2$ we raise Σ_{ν} to the $h^{\text {th }}$ power such that
(4.10) $h u \in[u(\ell, \eta),(3 / 2) u(\ell, \eta)]=: J_{\ell}(\eta)$.
\sum_{ν}^{h} runs from A_{h} to B_{h} where $U^{h} \leq A_{h} \leq B_{h} \leq(2 U)^{h}$.

We will denote the resulting coefficients after taking $h^{\text {th }}$ power of \sum_{ν} (where now $h \in[2,20 / \varepsilon)$) by $a_{n}^{(h)}=b_{n}$ and will find α_{ν} $\left(\nu=1,2, \ldots, K^{\prime}\right)$ with $\left|\alpha_{\nu}\right|=1$ satisfying
(4.11) $\quad\left|\sum_{\nu}^{h}\right|=\left|\sum_{A_{h} \leq n \leq B_{h}} b_{n} n^{-\varrho_{\nu}^{*}}\right|=\alpha_{\nu} \sum_{A_{h} \leq n \leq B_{h}} b_{n} n^{-\varrho_{\nu}^{*}}$.

Using Halász' idea, after taking the $h^{\text {th }}$ powers of \sum_{ν} we square both sides and by the Cauchy-Schwarz inequality we get
(4.12)
$\frac{\left(K^{\prime}\right)^{2}}{\mathcal{L}^{2 h}}<_{\varepsilon}\left(\sum_{A_{h} \leq n<B_{h}} \frac{\left|b_{n}\right|^{2}}{n}\right)\left(\sum_{A_{h} \leq n<B_{h} \nu, \kappa=1} \sum_{K^{\prime}}^{K^{\prime}} \alpha_{\nu} \bar{\alpha}_{\kappa} \frac{1}{n^{1-\eta_{\nu}-\eta_{\kappa}+i\left(\gamma_{\nu}^{*}-\gamma_{k}^{*}\right)}}\right)$

$$
\ll \mathcal{L}^{c(\varepsilon)}\left\{K^{\prime}\left(K^{\prime}-1\right) T^{-\varepsilon}+K^{\prime} B_{h}^{2 \eta}\right\}
$$

by $2 \ell(\ell-1) \eta<1$. The crucial estimate $T^{-\varepsilon}$ for the
exponential sum in the second factor follows from (3.5) if for the corresponding pair (ν, k) we have $B_{h} \leq\left|\gamma_{\nu}^{*}-\gamma_{k}^{*}\right|^{2 / \ell}$.
Otherwise the same estimate $T^{-\varepsilon}$ follows from (3.3) and a variant of Theorem II. 2 of the Appendix of Montgomery's book (cf. (3.6)).

Hence, using $B_{2} \leq 4\left(N_{k}^{*}(T)\right)^{2}$ and $h u \in J_{\ell}(\eta)$ we obtain
(4.13)
$K^{\prime} \ll \mathcal{L}^{2 c(\varepsilon)} B_{h}^{2 \eta} \ll T^{\eta(\max (3 / \ell(1-a \eta(\ell-1)-2 \ell \varepsilon), 4 / k(1-(k-1) \eta)-2 k \varepsilon))}$.
Consequently,
(4.14)
$K \ll T^{A^{\prime}(\eta) \eta+\varepsilon}$.

Thank you for your attention.

