Classification of L-functions of degree 2 and conductor 1

(joint with J.Kaczorowski)

ELAZ 2022
Poznań - August 22-26, 2022

- Framework: Extended S-class \mathcal{S}^{\sharp} :
- Dirichlet series for $\sigma>1$,
- general funct. eq. with multiple 「-factors; (more details later on)

$$
\text { S-class } \mathcal{S}: F \in \mathcal{S}^{\sharp} \text { with }
$$

- general Euler product,
- Ramanujan conj.
- What do S-classes contain ? Difficult problem; general expectation:
- $d \notin \mathbb{N} \rightarrow$ no functions of degree d in \mathcal{S}^{\sharp},
- $d \in \mathbb{N} \rightarrow\{F \in \mathcal{S}$ of degree $d\}$
$=\{$ automorphic L-functs. of degree $d\}$,
- $F \in \mathcal{S}^{\sharp}$ of degree $d \in \mathbb{N} \rightarrow$???
\mathcal{S} and \mathcal{S}^{\sharp} known for degree $d<2$ (Conrey-Ghosh 1993, Kac.-Per. 1999-2011), confirming expectation and describing $F \in \mathcal{S}^{\sharp}$ with $d=0$ (suitable D-polyn.) and $d=1$ (suitable lin. comb. of $L(s, \chi)$'s).

First open case $d=2$; here expect:

- $F \in \mathcal{S} \rightarrow L$-funct. of Hecke or Maass eigenforms of any level;
- $F \in \mathcal{S}^{\sharp} \rightarrow$??? (Hecke's "triangle forms" ?).
- Degree $d=2$ and conductor $q=1$. General case $d=2$ apparently very difficult. Next important invariant after degree is conductor q (e.g. $q=$ level for modular L); if $q=1$ nice phenomenon happens allowing complete description. Classification by new invariant χ_{F} (eigenweight) and requires normalization of F to fit "modular" framework. However:
- every F with $d=2$ and $q=1$ can be normalized in a simple way (vertical shift + divide by first coeff. $\neq 0$);
- χ_{F} easy to compute from data of F.

For example:

$$
\chi_{F}=0 \Longrightarrow F=\zeta^{2}, \quad \chi_{F}=\frac{121}{2} \Longrightarrow F=L_{\Delta}
$$

- Theorem. Let $F \in \mathcal{S}^{\sharp}$ with $d=2, q=1$ and normalized. Then $\chi_{F} \in \mathbb{R}$ and $\chi_{F}>0 \Rightarrow F=L_{f}$, with f Hecke cusp form of level 1 and even integral weight $k=1+\sqrt{2 \chi_{F}}$; $\chi_{F}=0 \Rightarrow F=\zeta^{2}$;
$\chi_{F}<0 \Rightarrow F=L_{u}$, with u Maass form of level 1, weight 0 and eigenvalue $1 / 4+\kappa^{2}=\left(1-2 \chi_{F}\right) / 4$. When $\chi_{F}<0$, parity of u is $\varepsilon=\frac{1-\omega_{F}}{2}, \omega_{F}=$ root number of F.

Theorem confirms expectation (linear independence in \mathcal{S}).

- Some definitions and properties.

Class \mathcal{S}^{\sharp} and invariants:

$$
\begin{gathered}
\gamma(s) F(s)=\omega \overline{\gamma(1-\bar{s})} \overline{F(1-\bar{s})}, \quad|\omega|=1, \\
\gamma(s)=Q^{s} \prod_{j=1}^{r} \Gamma\left(\lambda_{j} s+\mu_{j}\right) ;
\end{gathered}
$$

γ-factor $\gamma(s)$ has $Q>0, \lambda_{j}>0, \Re\left(\mu_{j}\right) \geq 0$.

$$
\begin{gathered}
d=2 \sum_{j=1}^{r} \lambda_{j}, \quad q=(2 \pi)^{d} Q^{2} \prod_{j=1}^{r} \lambda_{j}^{2 \lambda_{j}}, \\
\omega_{F}=\omega \prod_{j=1}^{r} \lambda_{j}^{-2 i \Im \mu_{j}}, \quad H(n)=2 \sum_{j=1}^{r} \frac{B_{n}\left(\mu_{j}\right)}{\lambda_{j}^{n-1}}
\end{gathered}
$$

H-invariants $(H(0)=d)$, eigenweight:

$$
\begin{equation*}
\chi_{F}=H(1)+H(2)+2 / 3 \text { (easy to comp.). } \tag{1}
\end{equation*}
$$

For normalized F with $d=2$ and $q=1$:

- invariant form of funct. eq. (Γ-reflection formula + real D-coefficients):

$$
\begin{gather*}
F(s)=S_{F}(s) h_{F}(s) F(1-s) \tag{2}\\
S_{F}(s):=2^{r} \prod_{j=1}^{r} \sin \left(\lambda_{j} s+\mu_{j}\right)=\sum_{j=0}^{N} a_{j} e^{i \pi \omega_{j} s} \\
\left(a_{j} \neq 0,-1=\omega_{0}<\ldots<\omega_{N}=1, \omega_{j}=-\omega_{N-j}\right)
\end{gather*}
$$

$$
\begin{equation*}
h_{F}(s) \approx \frac{\omega_{F}}{\sqrt{2 \pi}}(4 \pi)^{2 s-1} \sum_{\ell=0}^{\infty} d_{\ell}\left\ulcorner\left(2\left(s_{\ell}-s\right)\right)\right. \tag{3}
\end{equation*}
$$

\approx asympt. exp., where d_{ℓ} structural invariants (complicated recursive def., $d_{0}=1$) and $s_{\ell}=$ $3 / 4-\ell / 2 ; h_{F}(s)$ and $S_{F}(s)$ are invariants;

- standard twist:

$F(s, \alpha)=\sum_{n=1}^{\infty} \frac{a(n)}{n^{s}} e(-\alpha \sqrt{n}), \quad \alpha>0, e(x)=e^{2 \pi i x}$,
$\operatorname{Spec}(F)=\{2 \sqrt{m}: m \in \mathbb{N}$ with $a(m) \neq 0\} ;$
$\alpha \in \operatorname{Spec}(F) \Rightarrow F(s, \alpha)$ has at most simple poles at $s=s_{\ell}(\ell \geq 0)$ with residue

$$
\begin{equation*}
\rho_{\ell}(\alpha)=d_{\ell} \frac{e^{i \pi / 4} \overline{a\left(\alpha^{2} / 4\right)}}{(-2 \pi i)^{\ell} \alpha^{\ell+1 / 2}} \quad\left(\rho_{0}(\alpha) \neq 0\right) \tag{4}
\end{equation*}
$$

REMARK. Conj. by Kac.-Per. (2002):
funct. eq. of $F \in \mathcal{S}^{\sharp}$ of degree d is determined by q, ω_{F} and $H(n)$ with $n \leq d$.
Theorem confirms this when $d=2$ and $q=1$, in view of definition of χ_{F} in (1)

- Basic ideas of proof. Four steps.

1. Transformation formula and invariants.

Structural invariants d_{ℓ} appear in:

- funct. eq. of F, see (2) and (3)
- residues of standard twist, see (4).

But: special form of transformation formula for standard twists when F normalized with $d=2$ and $q=1 \Longrightarrow$ every $d_{\ell}(\ell \geq 2)$ determined by d_{1} by algorithm independent of F.

So $d_{1} \rightarrow h_{F}(s) / \omega_{F}$, and computation shows that

$$
\begin{equation*}
\chi_{F}=d_{1}+\frac{1}{8} \in \mathbb{R} \tag{5}
\end{equation*}
$$

hence:
value of χ_{F} determines $h_{F}(s) / \omega_{F}$.

2. Virtual γ-factors.

Virtual γ-factors of Hecke and Maass type:
$(2 \pi)^{-s} \Gamma(s+\mu) \quad \mu>0$
$\pi^{-s} \Gamma\left(\frac{s+\varepsilon+i \kappa}{2}\right) \Gamma\left(\frac{s+\varepsilon-i \kappa}{2}\right) \quad \varepsilon \in\{0,1\}, \kappa \geq 0$.
Although such $\gamma(s)$ not always associated with L-function, their struct. invariants d_{ℓ} have same formal properties as in $\mathcal{S}^{\sharp}\left(d_{1} \rightarrow d_{\ell}\right)$. Moreover

$$
\chi_{\gamma}=\left\{\begin{array}{l}
2 \mu^{2} \\
-2 \kappa^{2}
\end{array}\right.
$$

hence $\left\{\chi_{\gamma}: \gamma(s)\right.$ virtual γ-factor $\}=\mathbb{R}$. Thus to $F \in \mathcal{S}^{\#}$ associate virtual γ-factor $\gamma(s)$ such that

$$
\chi_{\gamma}=\chi_{F}
$$

Therefore $h_{F}(s)=\omega_{F} h_{\gamma}(s)$, hence by (2) funct. eq. of F becomes

$$
\begin{gather*}
\gamma(s) F(s)=\omega_{F} R(s) \gamma(1-s) F(1-s) \tag{6}\\
R(s)=\frac{S_{F}(s)}{S_{\gamma}(s)} \quad(\text { satisfying } R(s) R(1-s)=1)
\end{gather*}
$$

REMARK. If $R(s)=$ const., then Theorem follows from classical converse theorems of Hecke and Maass. Moreover

$$
\begin{equation*}
R(s) \neq \text { const. } \Longrightarrow N \geq 3 \text { and } \omega_{N-1}>0 \tag{7}
\end{equation*}
$$

3. Period functions.

Proving that $R(s)=$ const. quite involved. Based on study of associated "modular form"
$f(z)=\sum_{n=1}^{\infty} a(n) n^{\lambda} e(n z) \quad z \in \mathbb{H}, \lambda=\left\{\begin{array}{l}\mu(\mathrm{H} \text {-case }) \\ i \kappa \text { (M-case) }\end{array}\right.$
and period function (Lewis-Zagier 2001)

$$
\psi(z)=f(z)-z^{-2 \lambda-1} f(-1 / z)
$$

By study of $f(z)$ get:
i) $\psi(z)$ holomorphic for $-\rho \pi<\arg (z)<\pi(\rho>0)$,
ii) $\psi(z)=Q(z)+$ holom. for $|\arg (z)|<\pi$
with certain integral $Q(z)$,
iii) $\psi(z)=\psi(z+1)+(z+1)^{-2 \mu-1} \psi\left(\frac{z}{z+1}\right)$
(three-term funct. eq.).
Hence by i)-iii) get
$\psi(z)$ and $Q(z)$ holom. for $-\pi<\arg (z)<\pi$.
REMARK. Maass case analogous to Lewis-Zagier; Hecke case more delicate, involving use of special functions.
4. Conclusion of proof. By contradiction, assuming $R(s) \neq$ const. Then:

- using (7), integral $Q(z)$ in (8) transformed to (roughly)
$f(z)+$ holom. for $-\rho^{\prime} \pi<\arg (z)<\pi\left(\rho^{\prime}>0\right)$,
- hence (9) \Longrightarrow
$f(z)$ holomorphic for $-\rho^{\prime} \pi<\arg (z)<\pi$.
But $f(z)$ is 1-periodic, so $f(z)$ entire and hence $f \equiv 0$, contradiction.

- Some details for step 1.

General transf. formula for nonlinear twists:

$$
\begin{aligned}
F(s ; f) & :=\sum_{n=1}^{\infty} \frac{a(n)}{n^{s}} e(-f(n, \boldsymbol{\alpha})) \\
& =\sum_{j=0}^{J} W_{j}(s, \boldsymbol{\alpha}) \bar{F}\left(s^{*}+\eta_{j} ; f^{*}\right)+\text { holom. }
\end{aligned}
$$

f - nonlinear twist, $f(n, \boldsymbol{\alpha})=\sum_{j=0}^{M} \alpha_{j} n^{\kappa_{j}}$
f^{*} - its dual twist,
W_{j} - holom., $W_{0}(s) \neq 0$,
s^{*} - certain linear funct. of s,
η_{j} - shifts with $0=\eta_{0}<\eta_{1}<\ldots<\eta_{J}$.
In general no analytic info on $F(s ; f)$ and $F\left(s ; f^{*}\right)$, but if $F \in \mathcal{S}^{\sharp}$ normalized with $d=2, q=1$, $\alpha \in \operatorname{Spec}(F)$ and choosing

$$
f(n, \alpha)=n+\alpha \sqrt{n} \quad(\text { thus } F(s ; f)=F(s, \alpha)),
$$

then transf. formula simplifies to

$$
\begin{equation*}
F(s, \alpha)=\sum_{j=0}^{J} W_{j}(s, \alpha) F(s+j / 2, \alpha)+\text { holom. }, \tag{10}
\end{equation*}
$$

W_{j} explicit (complicated) polyn. involving structural invariants $d_{\ell}, W_{0} \equiv 1$.

From (10) obtain

$$
\sum_{j=1}^{J} W_{j}(s, \alpha) F(s+j / 2, \alpha)=\text { holom. }
$$

so, computing residues, by (4) get: $\forall N \geq 2 \exists$

$$
Q_{N}\left(X_{0}, \ldots, X_{N}\right)=\sum_{\ell, h \geq 0, \ell+h \leq N} \alpha_{\ell, h} X_{\ell} X_{h}
$$

with $\alpha_{\ell, h} \in \mathbb{R}, \alpha_{0, N}+\alpha_{N, 0}=1$ s.t. for every F

$$
\begin{equation*}
Q_{N}\left(d_{0}, \ldots, d_{N}\right)=0 \tag{11}
\end{equation*}
$$

From shape of (11) get: d_{1} determines all d_{ℓ} with $\ell \geq 2$, hence by (5) so does χ_{F}.

REMARK. We believe similar phenomenon holds in general, i.e.: invariants d_{ℓ} should lie on algebraic varieties largely independent of F. This could explain why Γ-factors of L-functions have special shape.

- Some details for step 2.
$\gamma(s)$ virtual γ-factor. Computation from definition of d_{ℓ} shows:

$$
\forall \ell \exists P_{\ell}, Q_{\ell} \in \mathbb{R}[x] \text { s.t. } d_{\ell}= \begin{cases}P_{\ell}(\mu) & (H \text {-case }) \\ Q_{\ell}(\kappa) & (M \text {-case }) .\end{cases}
$$

If $\gamma(s)$ associated to L-function, then (11) holds for such d_{ℓ}. But this is polyn. eq. in μ or κ, and $\exists \infty$-many μ (weights) and κ (eigenvalues). So (11) holds identically in μ or κ, hence d_{1} determines all d_{ℓ} for virtual γ-factors as well. Hence χ_{γ} determines $h_{\gamma}(s)$ and step 2 follows.

- Some details for step 3.

Let $z=x+i y, y>0$. Start with Mellin's transf. and use funct. eq. (6) in step $2 \rightarrow$ express $f(i y)$ as (roughly)
$\int_{(c)} \Gamma(s) \frac{\gamma(1-s+\lambda)}{\gamma(s-\lambda)} R(1-s) F(1-s+\lambda)(2 \pi y)^{-s} d s$,
$\gamma(s)$ - virtual γ-factor of $F, R(s)=S_{F}(s) / S_{\gamma}(s)$.
Hecke case (Maass case simpler thanks to shape of virtual $\gamma(s)$). Using

$$
S_{F}(s)=-2 \omega_{F} \cos (\pi s)+\sum_{j=1}^{N-1} a_{j} e^{i \pi \omega_{j} s}
$$

after expansion of $F+$ manipulations get (roughly)

$$
\begin{equation*}
f(i y)=y^{-\mu-1} \sum_{n=1}^{\infty} a(n) J\left(\frac{2 \pi n}{y}\right)+Q(i y) \tag{12}
\end{equation*}
$$

where

$$
J(w)=\frac{1}{2 \pi i} \int_{(1+\delta)} \frac{1}{\cos (\pi s) \Gamma(1-s-\mu)} w^{-s} d w
$$

and

$$
Q(z) \text { holom. }-\pi\left(1-\omega_{N-1}\right)<\arg (z)<\pi .
$$

Moreover

$$
\begin{equation*}
J(w)=-\frac{w^{-1 / 2}}{\pi} E_{\beta}(w) \tag{13}
\end{equation*}
$$

with $E_{\beta}(w)$ Mittag-Leffler function with $\beta=$ $1 / 2-\mu$, satisfying

$$
\begin{equation*}
E_{\beta}(w)=\kappa_{0} e^{-w} w^{1-\beta}+I_{\beta}(w), \tag{14}
\end{equation*}
$$

$I_{\beta}(w)$ holom. on \mathbb{C} with suitable cut.
But first term of (14) with $w=2 \pi n / y$ rebuilds $f(i / y)$, so from (12)-(14) arrive to

$$
\begin{align*}
& f(z)=z^{-2 \mu-1} f(-1 / z)+Q(z)+\text { holom } \\
&=z^{-2 \mu-1} f(-1 / z)+\psi(z) \tag{15}\\
& \psi(z) \text { holom. }-\pi\left(1-\omega_{N-1}\right)<\arg (z)<\pi .
\end{align*}
$$

Moreover, from (15) + 1-periodicity of $f(z)$ get three-term funct. eq. and then continuation of $\psi(z)$ and $Q(z)$ to $|\arg (z)|<\pi$.

REMARK. Actually, continuation of $Q(z)$ to any sector larger than $-\pi\left(1-\omega_{N-1}\right)<\arg (z)<\pi$ enough to conclude proof (will see in next step).

- Some details for step 4.

By contradiction, assume $R(s) \neq$ const., so

$$
N \geq 3 \text { and } \omega_{N-1}>0 \text { by (7). }
$$

Recall $Q(z)$ sum of integrals over $j=1, \ldots, N-1$ and accordingly write

$$
Q(z)=\sum_{j=1}^{N-2} Q_{j}(z)+Q_{N-1}(z)
$$

Then (roughly):
sum holom. $-\pi\left(1-\omega_{N-2}\right)<\arg (z)<\pi$; $Q_{N-1}(z)$ rebuilds to $f\left(e^{i \pi\left(1-\omega_{N-1}\right)} z\right)$.

But $Q(z)$ holom. $|\arg (z)|<\pi$ and $\omega_{N-2}<\omega_{N-1}$, hence
$\mathrm{f}(\mathrm{z})$ holom. $-\delta \pi<\arg (z)<\pi$ with $\delta>0$, therefore $f(z)$ entire by 1-periodicity, thus $f \equiv 0$, contradiction.

