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• Framework: Extended S-class S]:
- Dirichlet series for σ > 1,

- general funct. eq. with multiple Γ-factors;

(more details later on)

S-class S: F ∈ S] with

- general Euler product,

- Ramanujan conj.

• What do S-classes contain ? Difficult prob-

lem; general expectation:

- d 6∈ N → no functions of degree d in S],
- d ∈ N → {F ∈ S of degree d}

= {automorphic L-functs. of degree d},
- F ∈ S] of degree d ∈ N → ???

S and S] known for degree d < 2 (Conrey-Ghosh

1993, Kac.-Per. 1999-2011), confirming expec-

tation and describing F ∈ S] with d = 0 (suit-

able D-polyn.) and d = 1 (suitable lin. comb.

of L(s, χ)’s).

First open case d = 2; here expect:

- F ∈ S → L-funct. of Hecke or Maass eigen-

forms of any level;

- F ∈ S] → ??? (Hecke’s “triangle forms”?).
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• Degree d = 2 and conductor q = 1. Gen-
eral case d = 2 apparently very difficult. Next
important invariant after degree is conductor q
(e.g. q = level for modular L); if q = 1 nice phe-
nomenon happens allowing complete description.

Classification by new invariant χF (eigenweight)
and requires normalization of F to fit “modular”
framework. However:
- every F with d = 2 and q = 1 can be normalized
in a simple way (vertical shift + divide by first
coeff. 6= 0);
- χF easy to compute from data of F .
For example:

χF = 0 =⇒ F = ζ2, χF =
121

2
=⇒ F = L∆

• Theorem. Let F ∈ S] with d = 2, q = 1 and
normalized. Then χF ∈ R and
χF > 0 ⇒ F = Lf , with f Hecke cusp form of
level 1 and even integral weight k = 1 +

√
2χF ;

χF = 0⇒ F = ζ2;
χF < 0⇒ F = Lu, with u Maass form of level 1,
weight 0 and eigenvalue 1/4+κ2 = (1−2χF )/4.

When χF < 0, parity of u is ε = 1−ωF
2 , ωF =

root number of F .

Theorem confirms expectation (linear indepen-
dence in S).
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• Some definitions and properties.
Class S] and invariants:

γ(s)F (s) = ωγ(1− s)F (1− s), |ω| = 1,

γ(s) = Qs
r∏

j=1

Γ(λjs+ µj);

γ-factor γ(s) has Q > 0, λj > 0,<(µj) ≥ 0.

d = 2
r∑

j=1

λj, q = (2π)dQ2
r∏

j=1

λ
2λj
j ,

ωF = ω
r∏

j=1

λ
−2i=µj
j , H(n) = 2

r∑
j=1

Bn(µj)

λn−1
j

H-invariants (H(0) = d), eigenweight:

χF = H(1) +H(2) + 2/3 (easy to comp.). (1)

For normalized F with d = 2 and q = 1:
- invariant form of funct. eq. (Γ-reflection
formula + real D-coefficients):

F (s) = SF (s)hF (s)F (1− s) (2)

SF (s) := 2r
r∏

j=1

sin(λjs+ µj) =
N∑
j=0

aje
iπωjs

(aj 6= 0, −1 = ω0 < ... < ωN = 1, ωj = −ωN−j)
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hF (s) ≈
ωF√
2π

(4π)2s−1
∞∑
`=0

d`Γ(2(s` − s)) (3)

≈ asympt. exp., where d` structural invariants

(complicated recursive def., d0 = 1) and s` =

3/4− `/2; hF (s) and SF (s) are invariants;

- standard twist:

F (s, α) =
∞∑
n=1

a(n)

ns
e(−α

√
n), α > 0, e(x) = e2πix,

Spec(F ) = {2
√
m : m ∈ N with a(m) 6= 0};

α ∈Spec(F )⇒ F (s, α) has at most simple poles

at s = s` (` ≥ 0) with residue

ρ`(α) = d`
eiπ/4a(α2/4)

(−2πi)`α`+1/2
(ρ0(α) 6= 0). (4)

REMARK. Conj. by Kac.-Per. (2002):

funct. eq. of F ∈ S] of degree d is determined

by q, ωF and H(n) with n ≤ d.
Theorem confirms this when d = 2 and q = 1,

in view of definition of χF in (1)



p.6

• Basic ideas of proof. Four steps.
1. Transformation formula and invariants.
Structural invariants d` appear in:
- funct. eq. of F , see (2) and (3)
- residues of standard twist, see (4).
But: special form of transformation formula for
standard twists when F normalized with d = 2
and q = 1 =⇒ every d` (` ≥ 2) determined by
d1 by algorithm independent of F .

So d1 → hF (s)/ωF , and computation shows that

χF = d1 +
1

8
∈ R; (5)

hence:

value of χF determines hF (s)/ωF .

2. Virtual γ-factors.
Virtual γ-factors of Hecke and Maass type:

(2π)−sΓ(s+ µ) µ > 0

π−sΓ
(s+ ε+ iκ

2

)
Γ
(s+ ε− iκ

2

)
ε ∈ {0,1}, κ ≥ 0.

Although such γ(s) not always associated with
L-function, their struct. invariants d` have same
formal properties as in S] (d1 → d`). Moreover

χγ =

2µ2

−2κ2,
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hence {χγ : γ(s) virtual γ-factor} = R. Thus to

F ∈ S] associate virtual γ-factor γ(s) such that

χγ = χF .

Therefore hF (s) = ωFhγ(s), hence by (2) funct.

eq. of F becomes

γ(s)F (s) = ωFR(s)γ(1− s)F (1− s), (6)

R(s) =
SF (s)

Sγ(s)
(satisfying R(s)R(1− s) = 1).

REMARK. If R(s) = const., then Theorem fol-

lows from classical converse theorems of Hecke

and Maass. Moreover

R(s) 6= const. =⇒ N ≥ 3 and ωN−1 > 0. (7)

3. Period functions.

Proving that R(s) = const. quite involved. Based

on study of associated “modular form”

f(z) =
∞∑
n=1

a(n)nλe(nz) z ∈ H, λ =

µ (H-case)

iκ (M-case)

and period function (Lewis-Zagier 2001)

ψ(z) = f(z)− z−2λ−1f(−1/z).
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By study of f(z) get:

i) ψ(z) holomorphic for −ρπ < arg(z) < π (ρ > 0),

ii) ψ(z) = Q(z) + holom. for | arg(z)| < π (8)

with certain integral Q(z),

iii) ψ(z) = ψ(z + 1) + (z + 1)−2µ−1ψ
( z

z + 1

)
(three-term funct. eq.).
Hence by i)–iii) get

ψ(z) and Q(z) holom. for −π < arg(z) < π. (9)

REMARK. Maass case analogous to Lewis-Zagier;
Hecke case more delicate, involving use of spe-
cial functions.

4. Conclusion of proof. By contradiction,
assuming R(s) 6= const. Then:
- using (7), integral Q(z) in (8) transformed to
(roughly)

f(z) + holom. for −ρ′π < arg(z) < π (ρ′ > 0),

- hence (9) =⇒

f(z) holomorphic for −ρ′π < arg(z) < π.

But f(z) is 1-periodic, so f(z) entire and hence
f ≡ 0, contradiction.
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• Some details for step 1.

General transf. formula for nonlinear twists:

F (s; f) :=
∞∑
n=1

a(n)

ns
e(−f(n,α))

=
J∑

j=0

Wj(s,α)F (s∗+ ηj; f
∗) + holom.,

f - nonlinear twist, f(n,α) =
∑M
j=0αjn

κj

f∗ - its dual twist,

Wj - holom., W0(s) 6= 0,

s∗- certain linear funct. of s,

ηj - shifts with 0 = η0 < η1 < ... < ηJ.

In general no analytic info on F (s; f) and F (s; f∗),

but if F ∈ S] normalized with d = 2, q = 1,

α ∈ Spec(F ) and choosing

f(n, α) = n+ α
√
n (thus F (s; f) = F (s, α)),

then transf. formula simplifies to

F (s, α) =
J∑

j=0

Wj(s, α)F (s+ j/2, α) + holom.,

(10)

Wj explicit (complicated) polyn. involving struc-

tural invariants d`, W0 ≡ 1.
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From (10) obtain

J∑
j=1

Wj(s, α)F (s+ j/2, α) = holom.,

so, computing residues, by (4) get: ∀N ≥ 2 ∃

QN(X0, ..., XN) =
∑

`,h≥0,`+h≤N
α`,hX`Xh

with α`,h ∈ R, α0,N + αN,0 = 1 s.t. for every F

QN(d0, ..., dN) = 0. (11)

From shape of (11) get: d1 determines all d`
with ` ≥ 2, hence by (5) so does χF .

REMARK. We believe similar phenomenon holds

in general, i.e.: invariants d` should lie on alge-

braic varieties largely independent of F . This

could explain why Γ-factors of L-functions have

special shape.
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• Some details for step 2.

γ(s) virtual γ-factor. Computation from defini-

tion of d` shows:

∀` ∃P`, Q` ∈ R[x] s.t. d` =

P`(µ) (H-case)

Q`(κ) (M-case).

If γ(s) associated to L-function, then (11) holds

for such d`. But this is polyn. eq. in µ or κ,

and ∃∞-many µ (weights) and κ (eigenvalues).

So (11) holds identically in µ or κ, hence d1

determines all d` for virtual γ-factors as well.

Hence χγ determines hγ(s) and step 2 follows.
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• Some details for step 3.
Let z = x+ iy, y > 0. Start with Mellin’s transf.
and use funct. eq. (6) in step 2 → express
f(iy) as (roughly)∫

(c)
Γ(s)

γ(1− s+ λ)

γ(s− λ)
R(1− s)F (1− s+ λ)(2πy)−sds,

γ(s) - virtual γ-factor of F , R(s) = SF (s)/Sγ(s).

Hecke case (Maass case simpler thanks to shape
of virtual γ(s)). Using

SF (s) = −2ωF cos(πs) +
N−1∑
j=1

aje
iπωjs,

after expansion of F + manipulations get (roughly)

f(iy) = y−µ−1
∞∑
n=1

a(n)J
(2πn

y

)
+Q(iy) (12)

where

J(w) =
1

2πi

∫
(1+δ)

1

cos(πs)Γ(1− s− µ)
w−sdw,

and

Q(z) holom. −π(1− ωN−1) < arg(z) < π.

Moreover

J(w) = −
w−1/2

π
Eβ(w) (13)
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with Eβ(w) Mittag-Leffler function with β =

1/2− µ, satisfying

Eβ(w) = κ0e
−ww1−β + Iβ(w), (14)

Iβ(w) holom. on C with suitable cut.

But first term of (14) with w = 2πn/y rebuilds

f(i/y), so from (12)-(14) arrive to

f(z) = z−2µ−1f(−1/z) +Q(z) + holom.

= z−2µ−1f(−1/z) + ψ(z),
(15)

ψ(z) holom. −π(1− ωN−1) < arg(z) < π.

Moreover, from (15) + 1-periodicity of f(z) get

three-term funct. eq. and then continuation of

ψ(z) and Q(z) to | arg(z)| < π.

REMARK. Actually, continuation of Q(z) to

any sector larger than −π(1−ωN−1) < arg(z) < π

enough to conclude proof (will see in next step).
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• Some details for step 4.

By contradiction, assume R(s) 6= const., so

N ≥ 3 and ωN−1 > 0 by (7).

Recall Q(z) sum of integrals over j = 1, ..., N−1

and accordingly write

Q(z) =
N−2∑
j=1

Qj(z) +QN−1(z).

Then (roughly):

sum holom. −π(1− ωN−2) < arg(z) < π;

QN−1(z) rebuilds to f(eiπ(1−ωN−1)z).

But Q(z) holom. | arg(z)| < π and ωN−2 < ωN−1,

hence

f(z) holom. −δπ < arg(z) < π with δ > 0,

therefore f(z) entire by 1-periodicity, thus f ≡ 0,

contradiction.


