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Primes in short intervals

By the prime number theorem, the number of primes up to x
is about x/ log x .

One wants to know about primes in short intervals: If we look
at a ”short” segment (x , x + H] around x , is the density of
primes in that segment still 1/ log x?

The smaller the H, the more difficult the problem.

Huxley’s prime number theorem from 1972 gives∑
x<p≤x+H

1 = (1 + o(1))
H

log x
, H ≥ x7/12+ε.

This is based on Huxley’s zero-density estimate for the zeta
function and has resisted improvements, except Heath-Brown
(1988) has shown this for H ≥ x7/12−o(1).
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Primes in short intervals

Baker-Harman-Pintz (2001) showed with a sieve method∑
x<p≤x+H

1 ≥ ε H

logX
, H ≥ x0.525

for some ε > 0.

For shorter intervals one does not even know existence of
primes!

Assuming RH one knows that [x , x + x1/2 log x ] always
contains primes.

Cramer made a probabilistic model based on ”probability of n
being prime is 1/ log n”. Based on this, one expects that
intervals [x , x + (log x)2+ε] contain primes for all large x .

Huge gap between what’s known and what’s expected!
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Primes in almost all short intervals

Even under RH it is not known that [x , x + x1/2] always
contains primes.

What if one only requires that almost all intervals contain
primes?

A variant of Huxley’s prime number theorem says that, for
almost all x ∈ [X , 2X ] (i.e. with o(X ) exceptions),∑

x<p≤x+H

1 = (1 + o(1))
H

logX
, H ≥ x1/6+ε.

This can be proved using the same zero-density estimates and
has also resisted improvements.

A lower bound has been shown for H ≥ X 1/20 by Jia.

One expects that, for any h→∞ with X →∞, the interval
(x , x + h log x ] contains primes for almost all x ∈ [X , 2X ].
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Kaisa Matomäki (joint with Joni Teräväinen) E2 numbers in almost all short intervals



Primes in almost all short intervals

Even under RH it is not known that [x , x + x1/2] always
contains primes.

What if one only requires that almost all intervals contain
primes?

A variant of Huxley’s prime number theorem says that, for
almost all x ∈ [X , 2X ] (i.e. with o(X ) exceptions),∑

x<p≤x+H

1 = (1 + o(1))
H

logX
, H ≥ x1/6+ε.

This can be proved using the same zero-density estimates and
has also resisted improvements.

A lower bound has been shown for H ≥ X 1/20 by Jia.

One expects that, for any h→∞ with X →∞, the interval
(x , x + h log x ] contains primes for almost all x ∈ [X , 2X ].
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Almost primes

One expects that, for any h→∞ with X →∞, the interval
(x − h logX , x ] contains primes for almost all x ∈ [X/2,X ].

One can ask similar questions about almost-primes, i.e. Pk

numbers that have at most k prime factors or Ek numbers
that have exactly k prime factors.

I have recently shown that, as soon as h→∞ with X →∞,
the interval (x − h logX , x ] contains P2-numbers for almost
all x ∈ [X/2,X ].

Wu has shown that the interval (x − x101/232, x ] contains P2

numbers for all sufficiently large x .

Teräväinen (2016) has shown that almost all intervals of
length (log logX )6+ε logX contain E3 numers.
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E2 numbers in almost all short intervals

From now on we will concentrate on E2 numbers in almost all
short intervals.

More difficult than P2 due to parity barrier

Previous results saying that, for almost all x ∈ [X , 2X ], the
interval (x , x + H] contains E2 numbers:

Motohashi (1979): H = X ε

Wolke (1979): H = (logX )5·10
6

Harman (1982): H = (logX )7+ε

Teräväinen (2016): H = (logX )3.51

Riemann hypothesis: H = (logX )2+ε
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Teräväinen (2016): H = (logX )3.51

Riemann hypothesis: H = (logX )2+ε
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E2 numbers in almost all very short intervals

Theorem (M.-Teräväinen (202?))

The interval (x − (logX )2.1, x ] contains E2-numbers for almost all
x ∈ [X/2,X ].

Recall that the previous record was exponent 3.51 and even
Riemann hypothesis cannot get below 2.

Assuming a slight variant of the density hypothesis, Harman’s
method would have yielded 3 + ε. This was also the limit of
Teräväinen’s previous result.

We manage to overcome this limitation.

In this talk I will actually prove this for slightly larger exponent
2.11 and cheat at some places as this simplifies the argument.
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Sketch of the proof

We study p1p2 ∈ (x − (logX )2.11, x ] with
p1 ∼ P1 := (logX )1.11, i.e. one of the primes is very small.

For p2, use Harman’s sieve to find a suitable minorant
ρ−(n) ≤ 1n∈P and reduce to studying, for H = (logX )2.11,

∫ X/H

X 1/1000

∣∣∣∣∣∣
∑
p1∼P1

1

p1+it
1

∑
n∼X/P1

ρ−(n)

n1+it

∣∣∣∣∣∣
2

dt.

If |
∑

p1∼P1
p−1−it1 | ≤ P−ε, easy.

Otherwise, decompose ρ−(n) as appropriate type I and type II
sums.

In each case we amplify by Pkε|
∑

p1∼P1
p−1−it1 |k ≥ 1.

We use mean value theorem of Deshouillers-Iwaniec for type I
sums.

For type II sums we use large value theorems and
Heath-Brown’s recent sparse mean value theorem.
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Harman’s sieve

Use Harman’s sieve to find a suitable ρ−(n) ≤ 1n∈P:

Write ρ(n, z) = 1p|n =⇒ p>z .

Buchstab’s identity states that, for any z ≥ w ≥ 2,

ρ(n, z) = ρ(n,w)−
∑
n=pm
w≤p<z

ρ(m, p).

Harman’s sieve is based on applying, for n ∈ [X , 2X ],
Buchstab’s identity several times to 1n∈P = ρ(n, 2X 1/2).

This leads to some type I and type II sums, and some sums
we cannot deal with. But if they have positive sign, we can
discard them when looking for a minorant.

We are not allowed to discard too much, we need ρ−(n) to
have average � X/ logX .
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Kaisa Matomäki (joint with Joni Teräväinen) E2 numbers in almost all short intervals



Harman’s sieve

Use Harman’s sieve to find a suitable ρ−(n) ≤ 1n∈P:

Write ρ(n, z) = 1p|n =⇒ p>z .

Buchstab’s identity states that, for any z ≥ w ≥ 2,

ρ(n, z) = ρ(n,w)−
∑
n=pm
w≤p<z

ρ(m, p).

Harman’s sieve is based on applying, for n ∈ [X , 2X ],
Buchstab’s identity several times to 1n∈P = ρ(n, 2X 1/2).

This leads to some type I and type II sums, and some sums
we cannot deal with. But if they have positive sign, we can
discard them when looking for a minorant.

We are not allowed to discard too much, we need ρ−(n) to
have average � X/ logX .
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Harman’s sieve

Recall ρ(n, z) = 1p|n =⇒ p>z . Let n ∈ [X , 2X ], z = X 0.185. By
Buchstab

1n∈P = ρ(n, 2X 1/2) = ρ(n, z)−
∑
n=qm

z≤q<2X 1/2

ρ(m, q)

= ρ(n, z)−
∑
n=qm

z≤q<2X 1/2

ρ(m, z) +
∑

n=q1q2m
z≤q2<q1<2X 1/2

ρ(m, q2)

≥ ρ(n, z)−
∑
n=qm

z≤q<2X 1/2

ρ(m, z) =: ρ−(n).

Now z has been chosen in such a way that by PNT∑
X<q1q2m≤2X

z≤q2<q1<2X 1/2

ρ(m, q2) ≤ 0.99
X

logX
=⇒

∑
X<n≤2X

ρ−(n) ≥ 0.01
X

logX
.
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ρ−(n) = ρ(n, z)−
∑
n=qm

z≤q<2X 1/2

ρ(m, z)

= ρ(n,X ε2)−
∑
n=mp

X ε2≤q<z

ρ(m, q)−
∑
n=qm

z≤q<2X 1/2

ρ(m,X ε2)

+
∑

n=q1q2m

X ε2≤q1<z≤q2<2X 1/2

ρ(m, q1)

By the fundamental lemma of the sieve, the first and third terms
are more-or-less type I sums ∑

n=rm,r≤X 1/2+ε

ar

and the second and fourth terms type II sums∑
n=qr

X ε2≤q<z

1q∈Par .
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Kaisa Matomäki (joint with Joni Teräväinen) E2 numbers in almost all short intervals



Reduction to Dirichlet polynomials

By Perron’s formula

∑
x<p1n≤x+H

p1∼P1

ρ−(n) ≈
∫ X/H

−X/H
P1(1+it)P(1+it)

(x + H)1+it − x it

1 + it
dt,

where

P1(s) :=
∑
p1∼P1

1

ps1
, P(s) :=

∑
X/(2P1)≤n≤4X/P1

ρ−(n)

ns
,

Studying the mean square over x ∈ [X , 2X ], it more-or-less
suffices to show that∫ X/H

X 1/1000
|P1(1 + it)|2|P(1 + it)|2dt � 1

(logX )2+ε
.
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Dirichlet polynomials

Mean value theorem:∫ T

−T

∣∣∣∣∣∑
n∼N

ann
it

∣∣∣∣∣
2

dt = (2T + O(N))
∑
n≤N
|an|2

Deshouillers-Iwaniec mean value theorem: Let N ≤ T and
A ≤ T 1/5. Then∫ T

T/2

∣∣∣∣∣∑
n∼N

nit

∣∣∣∣∣
4 ∣∣∣∣∣∑

m∼A
amm

it

∣∣∣∣∣
2

dt �η T
1+η

∑
m∼A
|am|2.

Heath-Brown’s sparse mean value theorem. Let
M⊆ [1,T ],N ≥ T 2/3, and |εm|, |an| ≤ 1. Then∫ T

−T
|
∑
m∈M

εmm
it |2|

∑
n∼N

ann
it |2dt �η |M|2N2 + Nη|M|NT .
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Dirichlet polynomials

We wish to show that∫ X/H

X 1/1000
|P1(1 + it)|2|P(1 + it)|2dt � 1

(logX )2+ε
.

We partition [X 1/1000,X/H] = T ∪ U with

T := {t ∈ [X 1/1000,X/H] : |P1(1 + it)| ≤ P−ε1 }.

For t ∈ T use the pointwise bound |P1(1 + it)| ≤ P−ε1 and
estimate the mean square of P(1 + it) using (an improved)
mean value theorem.
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Kaisa Matomäki (joint with Joni Teräväinen) E2 numbers in almost all short intervals



The required type I and type II estimates

.

Recall that ρ−(n) can be decomposed type I and II sums∑
n=rm,r≤X 1/2+ε

ar and
∑
n=qr

X ε2≤q<z

1q∈Par .

Suffices to show, for every R ≤ X 1/2+ε, type I estimate

∫
U

∣∣∣∣∣∑
r∼R

ar
r1+it

∣∣∣∣∣
2
∣∣∣∣∣∣

∑
m∼X/(P1R)

1

m1+it

∣∣∣∣∣∣
2

dt � 1

(logX )100

and, for every Q ∈ [X ε, z ], type II estimate

∫
U

∣∣∣∣∣∣
∑

r∼X/(P1Q)

ar
r1+it

∣∣∣∣∣∣
2 ∣∣∣∣∣∣
∑
q∼Q

1q∈P
q1+it

∣∣∣∣∣∣
2

dt � 1

(logX )100
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Type I estimate

Recall U := {t ∈ [X 1/1000,X/H] : |P1(1 + it)| > P−ε1 }.

We wish to show that, for every R ≤ X 1/2+ε.∫
U

∣∣∣∣∣∑
r∼R

ar
r1+it

∣∣∣∣∣
2
∣∣∣∣∣∣

∑
m∼X/(P1R)

1

m1+it

∣∣∣∣∣∣
2

dt � 1

(logX )100

Choose k so that Pk
1 � T 1/10. For t ∈ U ,

1 ≤ |P1(1 + it)|kPkε
1 . Hence by C-S the above integral is

� Pkε
1

∫ X/H

X 1/1000

∣∣∣∣∣∑
r∼R

ar
r1+it

∣∣∣∣∣
4
1/2

·

∫ X/H

X 1/1000

∣∣∣∣∣∣
∑

m∼X/(P1R)

1

m1+it

∣∣∣∣∣∣
4

|P1(1 + it)|2k dt

1/2

.

The claim follows from MVT and Deshouillers-Iwaniec MVT.
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Type II estimate

Recall U := {t ∈ [X 1/1000,X/H] : |P1(1 + it)| > P−ε1 }. Need

to show, for every Q ∈ [X ε2 , z ],∫
U

∣∣∣∣∣∣
∑

r∼X/(P1Q)

ar
r1+it

∣∣∣∣∣∣
2 ∣∣∣∣∣∣
∑
q∼Q

1q∈P
q1+it

∣∣∣∣∣∣
2

dt � 1

(logX )100

Further split U into � logX sets Uσ, where

Uσ :=

t ∈ U :

∣∣∣∣∣∣
∑
q∼Q

1q∈P
q1+it

∣∣∣∣∣∣ ∈ (Q−σ, 2Q−σ]

 .

For σ ≤ 0.237, apply Jutila’s large value estimate.

Can assume σ > 0.237 and the claim reduces to∫
U

∣∣∣∣∣∣
∑

r∼X/(P1Q)

ar
r1+it

∣∣∣∣∣∣
2

� Q2·0.237

(logX )101
.
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Kaisa Matomäki (joint with Joni Teräväinen) E2 numbers in almost all short intervals



Type II estimate

Recall U := {t ∈ [X 1/1000,X/H] : |P1(1 + it)| > P−ε1 }. Need

to show, for every Q ∈ [X ε2 , z ],∫
U

∣∣∣∣∣∣
∑

r∼X/(P1Q)

ar
r1+it

∣∣∣∣∣∣
2 ∣∣∣∣∣∣
∑
q∼Q

1q∈P
q1+it

∣∣∣∣∣∣
2

dt � 1

(logX )100

Further split U into � logX sets Uσ, where

Uσ :=

t ∈ U :

∣∣∣∣∣∣
∑
q∼Q

1q∈P
q1+it

∣∣∣∣∣∣ ∈ (Q−σ, 2Q−σ]

 .

For σ ≤ 0.237, apply Jutila’s large value estimate.

Can assume σ > 0.237 and the claim reduces to∫
U

∣∣∣∣∣∣
∑

r∼X/(P1Q)

ar
r1+it

∣∣∣∣∣∣
2

� Q2·0.237

(logX )101
.

Kaisa Matomäki (joint with Joni Teräväinen) E2 numbers in almost all short intervals



Type II estimate

Suffices to show that∫
U

∣∣∣∣∣∣
∑

r∼X/(P1Q)

ar
r1+it

∣∣∣∣∣∣
2

� Q0.474

(logX )101
.

Choose k so that Pk
1 = X 1−o(1). By

1t∈U ≤ |P(1 + it)|2kP2εk , the integral above is

� P2εk
1

∫
U

∣∣∣∣∣∣
∑

r∼X/(P1Q)

ar
r1+it

∣∣∣∣∣∣
2

|P1(1 + it)|2kdt.

Coefficients of P1(s)k are supported on
P1 = (logX )1.11-smooth numbers, so they have a very sparse
support (of size X 1−1/1.1+o(1)).

Invoke Heath-Brown’s mean value theorem for sparse Dirichlet
polynomials
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Kaisa Matomäki (joint with Joni Teräväinen) E2 numbers in almost all short intervals



Outline

1 Background and results
Primes in short intervals
Primes in almost all short intervals
Almost primes in (almost all) short intervals

2 Methods
Harman’s sieve
Reductions
Type I and II estimates

3 Summary and more theorems
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E2 numbers in almost all very short intervals

Theorem (M.-Teräväinen (202?))

The interval (x − (logX )2.1, x ] contains E2-numbers for almost all
x ∈ [X/2,X ].

It is not difficult to adapt the argument to show that under
Lindelöf one gets down to 2 + ε. 2 is also the limit under RH.

Actually, with some work, density hypothesis seems to suffice
for 2 + ε. But this is another story.
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Kaisa Matomäki (joint with Joni Teräväinen) E2 numbers in almost all short intervals



Sketch of the proof

We study p1p2 ∈ (x − (logX )2.11, x ] with
p1 ∼ P1 := (logX )1.11, i.e. one of the primes is very small.

For p2, use Harman’s sieve to find a suitable minorant
ρ−(n) ≤ 1n∈P and reduce to studying, for H = (logX )2.11,

∫ X/H

X 1/1000

∣∣∣∣∣∣
∑
p1∼P1

1

p1+it
1

∑
n∼X/P1

ρ−(n)

n1+it

∣∣∣∣∣∣
2

dt.

If |
∑

p1∼P1
p−1−it1 | ≤ P−ε, easy.

Otherwise, decompose ρ−(n) as appropriate type I and type II
sums.

In each case we amplify by Pkε|
∑

p1∼P1
p−1−it1 |k ≥ 1.

We use mean value theorem of Deshouillers-Iwaniec for type I
sums.

For type II sums we use large value theorems and
Heath-Brown’s recent sparse mean value theorem.
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Some more theorems

The Dirichlet polynomial estimate concerning E2 numbers in
almost all short intervals also gives

Theorem (M.-Teräväinen (202?))

The interval (x −
√
x(log x)1.55, x ] contains E3 numbers for every

large x .

Our earlier work gave an asymptotic formula for E2 numbers in all
intervals:

Theorem (M.-Teräväinen (202?))

∑
x<p1p2≤x+H

pj∈P

1 = H
log log x

log x
+ O

(
H

log log log x

log x

)
, H ≥ x0.55+ε.
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Thank you!
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