E_{2} numbers in almost all short intervals

Kaisa Matomäki (joint with Joni Teräväinen)

University of Turku, Finland
ELAZ, August 22nd, 2022

Contents

(1) Background and results

- Primes in short intervals
- Primes in almost all short intervals
- Almost primes in (almost all) short intervals
(2) Methods
- Harman's sieve
- Reductions
- Type I and II estimates
(3) Summary and more theorems

Outline

(1) Background and results

- Primes in short intervals
- Primes in almost all short intervals
- Almost primes in (almost all) short intervals
(2) Methods
- Harman's sieve
- Reductions
- Type I and II estimates
(3) Summary and more theorems

Primes in short intervals

- By the prime number theorem, the number of primes up to x is about $x / \log x$.
- One wants to know about primes in short intervals: If we look at a "short" segment $(x, x+H]$ around x, is the density of primes in that segment still $1 / \log x$?
- By the prime number theorem, the number of primes up to x is about $x / \log x$.
- One wants to know about primes in short intervals: If we look at a "short" segment $(x, x+H]$ around x, is the density of primes in that segment still $1 / \log x$?
- The smaller the H, the more difficult the problem.
- By the prime number theorem, the number of primes up to x is about $x / \log x$.
- One wants to know about primes in short intervals: If we look at a "short" segment $(x, x+H]$ around x, is the density of primes in that segment still $1 / \log x$?
- The smaller the H, the more difficult the problem.
- Huxley's prime number theorem from 1972 gives

$$
\sum_{x<p \leq x+H} 1=(1+o(1)) \frac{H}{\log x}, \quad H \geq x^{7 / 12+\varepsilon}
$$

- By the prime number theorem, the number of primes up to x is about $x / \log x$.
- One wants to know about primes in short intervals: If we look at a "short" segment $(x, x+H]$ around x, is the density of primes in that segment still $1 / \log x$?
- The smaller the H, the more difficult the problem.
- Huxley's prime number theorem from 1972 gives

$$
\sum_{x<p \leq x+H} 1=(1+o(1)) \frac{H}{\log x}, \quad H \geq x^{7 / 12+\varepsilon}
$$

- This is based on Huxley's zero-density estimate for the zeta function and has resisted improvements, except Heath-Brown (1988) has shown this for $H \geq x^{7 / 12-o(1)}$.

Primes in short intervals

- Baker-Harman-Pintz (2001) showed with a sieve method

$$
\sum_{x<p \leq x+H} 1 \geq \varepsilon \frac{H}{\log X}, \quad H \geq x^{0.525}
$$

for some $\varepsilon>0$.

- Baker-Harman-Pintz (2001) showed with a sieve method

$$
\sum_{x<p \leq x+H} 1 \geq \varepsilon \frac{H}{\log X}, \quad H \geq x^{0.525}
$$

for some $\varepsilon>0$.

- For shorter intervals one does not even know existence of primes!
- Assuming RH one knows that $\left[x, x+x^{1 / 2} \log x\right]$ always contains primes.
- Baker-Harman-Pintz (2001) showed with a sieve method

$$
\sum_{x<p \leq x+H} 1 \geq \varepsilon \frac{H}{\log X}, \quad H \geq x^{0.525}
$$

for some $\varepsilon>0$.

- For shorter intervals one does not even know existence of primes!
- Assuming RH one knows that $\left[x, x+x^{1 / 2} \log x\right]$ always contains primes.
- Cramer made a probabilistic model based on "probability of n being prime is $1 / \log n "$. Based on this, one expects that intervals $\left[x, x+(\log x)^{2+\varepsilon}\right]$ contain primes for all large x.
- Baker-Harman-Pintz (2001) showed with a sieve method

$$
\sum_{x<p \leq x+H} 1 \geq \varepsilon \frac{H}{\log X}, \quad H \geq x^{0.525}
$$

for some $\varepsilon>0$.

- For shorter intervals one does not even know existence of primes!
- Assuming RH one knows that $\left[x, x+x^{1 / 2} \log x\right]$ always contains primes.
- Cramer made a probabilistic model based on "probability of n being prime is $1 / \log n "$. Based on this, one expects that intervals $\left[x, x+(\log x)^{2+\varepsilon}\right]$ contain primes for all large x.
- Huge gap between what's known and what's expected!
- Even under RH it is not known that $\left[x, x+x^{1 / 2}\right]$ always contains primes.
- What if one only requires that almost all intervals contain primes?
- Even under RH it is not known that $\left[x, x+x^{1 / 2}\right.$] always contains primes.
- What if one only requires that almost all intervals contain primes?
- A variant of Huxley's prime number theorem says that, for almost all $x \in[X, 2 X]$ (i.e. with $o(X)$ exceptions),

$$
\sum_{x<p \leq x+H} 1=(1+o(1)) \frac{H}{\log X}, \quad H \geq x^{1 / 6+\varepsilon}
$$

- This can be proved using the same zero-density estimates and has also resisted improvements.
- Even under RH it is not known that $\left[x, x+x^{1 / 2}\right.$] always contains primes.
- What if one only requires that almost all intervals contain primes?
- A variant of Huxley's prime number theorem says that, for almost all $x \in[X, 2 X]$ (i.e. with $o(X)$ exceptions),

$$
\sum_{x<p \leq x+H} 1=(1+o(1)) \frac{H}{\log X}, \quad H \geq x^{1 / 6+\varepsilon}
$$

- This can be proved using the same zero-density estimates and has also resisted improvements.
- A lower bound has been shown for $H \geq X^{1 / 20}$ by Jia.
- Even under RH it is not known that $\left[x, x+x^{1 / 2}\right.$] always contains primes.
- What if one only requires that almost all intervals contain primes?
- A variant of Huxley's prime number theorem says that, for almost all $x \in[X, 2 X]$ (i.e. with $o(X)$ exceptions),

$$
\sum_{x<p \leq x+H} 1=(1+o(1)) \frac{H}{\log X}, \quad H \geq x^{1 / 6+\varepsilon}
$$

- This can be proved using the same zero-density estimates and has also resisted improvements.
- A lower bound has been shown for $H \geq X^{1 / 20}$ by Jia.
- One expects that, for any $h \rightarrow \infty$ with $X \rightarrow \infty$, the interval $(x, x+h \log x]$ contains primes for almost all $x \in[X, 2 X]$.
- One expects that, for any $h \rightarrow \infty$ with $X \rightarrow \infty$, the interval $(x-h \log X, x]$ contains primes for almost all $x \in[X / 2, X]$.
- One can ask similar questions about almost-primes, i.e. P_{k} numbers that have at most k prime factors or E_{k} numbers that have exactly k prime factors.
- One expects that, for any $h \rightarrow \infty$ with $X \rightarrow \infty$, the interval $(x-h \log X, x]$ contains primes for almost all $x \in[X / 2, X]$.
- One can ask similar questions about almost-primes, i.e. P_{k} numbers that have at most k prime factors or E_{k} numbers that have exactly k prime factors.
- I have recently shown that, as soon as $h \rightarrow \infty$ with $X \rightarrow \infty$, the interval $(x-h \log X, x]$ contains P_{2}-numbers for almost all $x \in[X / 2, X]$.
- One expects that, for any $h \rightarrow \infty$ with $X \rightarrow \infty$, the interval $(x-h \log X, x]$ contains primes for almost all $x \in[X / 2, X]$.
- One can ask similar questions about almost-primes, i.e. P_{k} numbers that have at most k prime factors or E_{k} numbers that have exactly k prime factors.
- I have recently shown that, as soon as $h \rightarrow \infty$ with $X \rightarrow \infty$, the interval $(x-h \log X, x]$ contains P_{2}-numbers for almost all $x \in[X / 2, X]$.
- Wu has shown that the interval $\left(x-x^{101 / 232}, x\right]$ contains P_{2} numbers for all sufficiently large x.
- Teräväinen (2016) has shown that almost all intervals of length $(\log \log X)^{6+\varepsilon} \log X$ contain E_{3} numers.

E_{2} numbers in almost all short intervals

- From now on we will concentrate on E_{2} numbers in almost all short intervals.

E_{2} numbers in almost all short intervals

- From now on we will concentrate on E_{2} numbers in almost all short intervals.
- More difficult than P_{2} due to parity barrier
- From now on we will concentrate on E_{2} numbers in almost all short intervals.
- More difficult than P_{2} due to parity barrier
- Previous results saying that, for almost all $x \in[X, 2 X]$, the interval $(x, x+H]$ contains E_{2} numbers:
- Motohashi (1979): $H=X^{\varepsilon}$
- Wolke (1979): $H=(\log X)^{5 \cdot 10^{6}}$
- Harman (1982): $H=(\log X)^{7+\varepsilon}$
- Teräväinen (2016): $H=(\log X)^{3.51}$
- Riemann hypothesis: $H=(\log X)^{2+\varepsilon}$

E_{2} numbers in almost all very short intervals

Theorem (M.-Teräväinen (202?))
 The interval $\left(x-(\log X)^{2.1}, x\right]$ contains E_{2}-numbers for almost all $x \in[X / 2, X]$.

```
Theorem (M.-Teräväinen (202?))
The interval (x-(logX)}\mp@subsup{)}{}{2.1},x]\mathrm{ contains E2-numbers for almost all
x\in[X/2,X].
```

- Recall that the previous record was exponent 3.51 and even Riemann hypothesis cannot get below 2 .

Theorem (M.-Teräväinen (202?))

The interval $\left(x-(\log X)^{2.1}, x\right]$ contains E_{2}-numbers for almost all $x \in[X / 2, X]$.

- Recall that the previous record was exponent 3.51 and even Riemann hypothesis cannot get below 2 .
- Assuming a slight variant of the density hypothesis, Harman's method would have yielded $3+\varepsilon$. This was also the limit of Teräväinen's previous result.

Theorem (M.-Teräväinen (202?))

The interval $\left(x-(\log X)^{2.1}, x\right]$ contains E_{2}-numbers for almost all $x \in[X / 2, X]$.

- Recall that the previous record was exponent 3.51 and even Riemann hypothesis cannot get below 2 .
- Assuming a slight variant of the density hypothesis, Harman's method would have yielded $3+\varepsilon$. This was also the limit of Teräväinen's previous result.
- We manage to overcome this limitation.
- In this talk I will actually prove this for slightly larger exponent 2.11 and cheat at some places as this simplifies the argument.

Outline

(1) Background and results

- Primes in short intervals
- Primes in almost all short intervals
- Almost primes in (almost all) short intervals
(2) Methods
- Harman's sieve
- Reductions
- Type I and II estimates
(3) Summary and more theorems
- We study $p_{1} p_{2} \in\left(x-(\log X)^{2.11}, x\right]$ with
$p_{1} \sim P_{1}:=(\log X)^{1.11}$, i.e. one of the primes is very small.
- We study $p_{1} p_{2} \in\left(x-(\log X)^{2.11}, x\right]$ with $p_{1} \sim P_{1}:=(\log X)^{1.11}$, i.e. one of the primes is very small.
- For p_{2}, use Harman's sieve to find a suitable minorant $\rho^{-}(n) \leq 1_{n \in \mathbb{P}}$ and reduce to studying, for $H=(\log X)^{2.11}$,

$$
\int_{X^{1 / 1000}}^{X / H}\left|\sum_{p_{1} \sim P_{1}} \frac{1}{p_{1}^{1+i t}} \sum_{n \sim X / P_{1}} \frac{\rho^{-}(n)}{n^{1+i t}}\right|^{2} d t
$$

- We study $p_{1} p_{2} \in\left(x-(\log X)^{2.11}, x\right]$ with $p_{1} \sim P_{1}:=(\log X)^{1.11}$, i.e. one of the primes is very small.
- For p_{2}, use Harman's sieve to find a suitable minorant $\rho^{-}(n) \leq 1_{n \in \mathbb{P}}$ and reduce to studying, for $H=(\log X)^{2.11}$,

$$
\int_{X^{1 / 1000}}^{X / H}\left|\sum_{p_{1} \sim P_{1}} \frac{1}{p_{1}^{1+i t}} \sum_{n \sim X / P_{1}} \frac{\rho^{-}(n)}{n^{1+i t}}\right|^{2} d t
$$

- If $\left|\sum_{p_{1} \sim P_{1}} p_{1}^{-1-i t}\right| \leq P^{-\varepsilon}$, easy.
- Otherwise, decompose $\rho^{-}(n)$ as appropriate type I and type II sums.
- We study $p_{1} p_{2} \in\left(x-(\log X)^{2.11}, x\right]$ with $p_{1} \sim P_{1}:=(\log X)^{1.11}$, i.e. one of the primes is very small.
- For p_{2}, use Harman's sieve to find a suitable minorant $\rho^{-}(n) \leq 1_{n \in \mathbb{P}}$ and reduce to studying, for $H=(\log X)^{2.11}$,

$$
\int_{X^{1 / 1000}}^{X / H}\left|\sum_{p_{1} \sim P_{1}} \frac{1}{p_{1}^{1+i t}} \sum_{n \sim X / P_{1}} \frac{\rho^{-}(n)}{n^{1+i t}}\right|^{2} d t
$$

- If $\left|\sum_{p_{1} \sim P_{1}} p_{1}^{-1-i t}\right| \leq P^{-\varepsilon}$, easy.
- Otherwise, decompose $\rho^{-}(n)$ as appropriate type I and type II sums.
- In each case we amplify by $P^{k \varepsilon}\left|\sum_{p_{1} \sim P_{1}} p_{1}^{-1-i t}\right|^{k} \geq 1$.
- We study $p_{1} p_{2} \in\left(x-(\log X)^{2.11}, x\right]$ with $p_{1} \sim P_{1}:=(\log X)^{1.11}$, i.e. one of the primes is very small.
- For p_{2}, use Harman's sieve to find a suitable minorant $\rho^{-}(n) \leq 1_{n \in \mathbb{P}}$ and reduce to studying, for $H=(\log X)^{2.11}$,

$$
\int_{X^{1 / 1000}}^{X / H}\left|\sum_{p_{1} \sim P_{1}} \frac{1}{p_{1}^{1+i t}} \sum_{n \sim X / P_{1}} \frac{\rho^{-}(n)}{n^{1+i t}}\right|^{2} d t
$$

- If $\left|\sum_{p_{1} \sim P_{1}} p_{1}^{-1-i t}\right| \leq P^{-\varepsilon}$, easy.
- Otherwise, decompose $\rho^{-}(n)$ as appropriate type I and type II sums.
- In each case we amplify by $P^{k \varepsilon}\left|\sum_{p_{1} \sim P_{1}} p_{1}^{-1-i t}\right|^{k} \geq 1$.
- We use mean value theorem of Deshouillers-Iwaniec for type I sums.
- For type II sums we use large value theorems and Heath-Brown's recent sparse mean value theorem.
- Use Harman's sieve to find a suitable $\rho^{-}(n) \leq 1_{n \in \mathbb{P}}$:
- Use Harman's sieve to find a suitable $\rho^{-}(n) \leq 1_{n \in \mathbb{P}}$:
- Write $\rho(n, z)=1_{p \mid n} \Longrightarrow p>z$.
- Use Harman's sieve to find a suitable $\rho^{-}(n) \leq 1_{n \in \mathbb{P}}$:
- Write $\rho(n, z)=1_{p \mid n} \Longrightarrow p>z$.
- Buchstab's identity states that, for any $z \geq w \geq 2$,

$$
\rho(n, z)=\rho(n, w)-\sum_{\substack{n=p m \\ w \leq p<z}} \rho(m, p)
$$

- Use Harman's sieve to find a suitable $\rho^{-}(n) \leq 1_{n \in \mathbb{P}}$:
- Write $\rho(n, z)=1_{p \mid n} \Longrightarrow p>z$.
- Buchstab's identity states that, for any $z \geq w \geq 2$,

$$
\rho(n, z)=\rho(n, w)-\sum_{\substack{n=p m \\ w \leq p<z}} \rho(m, p)
$$

- Harman's sieve is based on applying, for $n \in[X, 2 X]$, Buchstab's identity several times to $1_{n \in \mathbb{P}}=\rho\left(n, 2 X^{1 / 2}\right)$.
- Use Harman's sieve to find a suitable $\rho^{-}(n) \leq 1_{n \in \mathbb{P}}$:
- Write $\rho(n, z)=1_{p \mid n} \Longrightarrow p>z$.
- Buchstab's identity states that, for any $z \geq w \geq 2$,

$$
\rho(n, z)=\rho(n, w)-\sum_{\substack{n=p m \\ w \leq p<z}} \rho(m, p)
$$

- Harman's sieve is based on applying, for $n \in[X, 2 X]$, Buchstab's identity several times to $1_{n \in \mathbb{P}}=\rho\left(n, 2 X^{1 / 2}\right)$.
- This leads to some type I and type II sums, and some sums we cannot deal with. But if they have positive sign, we can discard them when looking for a minorant.
- Use Harman's sieve to find a suitable $\rho^{-}(n) \leq 1_{n \in \mathbb{P}}$:
- Write $\rho(n, z)=1_{p \mid n \Longrightarrow p>z}$.
- Buchstab's identity states that, for any $z \geq w \geq 2$,

$$
\rho(n, z)=\rho(n, w)-\sum_{\substack{n=p m \\ w \leq p<z}} \rho(m, p)
$$

- Harman's sieve is based on applying, for $n \in[X, 2 X]$, Buchstab's identity several times to $1_{n \in \mathbb{P}}=\rho\left(n, 2 X^{1 / 2}\right)$.
- This leads to some type I and type II sums, and some sums we cannot deal with. But if they have positive sign, we can discard them when looking for a minorant.
- We are not allowed to discard too much, we need $\rho^{-}(n)$ to have average $\gg X / \log X$.

Recall $\rho(n, z)=1_{p \mid n \Longrightarrow p>z}$. Let $n \in[X, 2 X], z=X^{0.185}$. By Buchstab

Recall $\rho(n, z)=1_{p \mid n \Longrightarrow p>z}$. Let $n \in[X, 2 X], z=X^{0.185}$. By Buchstab

$$
1_{n \in \mathbb{P}}=\rho\left(n, 2 X^{1 / 2}\right)=\rho(n, z)-\sum_{\substack{n=q m \\ z \leq q<2 X^{1 / 2}}} \rho(m, q)
$$

Recall $\rho(n, z)=1_{p \mid n \Longrightarrow p>z}$. Let $n \in[X, 2 X], z=X^{0.185}$. By Buchstab

$$
\begin{aligned}
1_{n \in \mathbb{P}} & =\rho\left(n, 2 X^{1 / 2}\right)=\rho(n, z)-\sum_{\substack{n=q m \\
z \leq q<2 X^{1 / 2}}} \rho(m, q) \\
& =\rho(n, z)-\sum_{\substack{n=q m \\
z \leq q<2 X^{1 / 2}}} \rho(m, z)+\sum_{\substack{n=q_{1} q_{2} m \\
z \leq q_{2}<q_{1}<2 X^{1 / 2}}} \rho\left(m, q_{2}\right)
\end{aligned}
$$

Recall $\rho(n, z)=1_{p \mid n \Longrightarrow p>z}$. Let $n \in[X, 2 X], z=X^{0.185}$. By Buchstab

$$
\begin{aligned}
1_{n \in \mathbb{P}} & =\rho\left(n, 2 X^{1 / 2}\right)=\rho(n, z)-\sum_{\substack{n=q m \\
z \leq q<2 X^{1 / 2}}} \rho(m, q) \\
& =\rho(n, z)-\sum_{\substack{n=q m \\
z \leq q<2 X^{1 / 2}}} \rho(m, z)+\sum_{\substack{n=q_{1} q_{2} m \\
z \leq q_{2}<q_{1}<2 X^{1 / 2}}} \rho\left(m, q_{2}\right) \\
& \geq \rho(n, z)-\sum_{\substack{n=q m \\
z \leq q<2 X^{1 / 2}}} \rho(m, z)=: \rho^{-}(n) .
\end{aligned}
$$

Recall $\rho(n, z)=1_{p \mid n \Longrightarrow p>z}$. Let $n \in[X, 2 X], z=X^{0.185}$. By Buchstab

$$
\begin{aligned}
1_{n \in \mathbb{P}} & =\rho\left(n, 2 X^{1 / 2}\right)=\rho(n, z)-\sum_{\substack{n=q m \\
z \leq q<2 X^{1 / 2}}} \rho(m, q) \\
& =\rho(n, z)-\sum_{\substack{n=q m \\
z \leq q<2 X^{1 / 2}}} \rho(m, z)+\sum_{\substack{n=q_{1} q_{2} m \\
z \leq q_{2}<q_{1}<2 X^{1 / 2}}} \rho\left(m, q_{2}\right) \\
& \geq \rho(n, z)-\sum_{\substack{n=q m \\
z \leq q<2 X^{1 / 2}}} \rho(m, z)=: \rho^{-}(n) .
\end{aligned}
$$

Now z has been chosen in such a way that by PNT

$$
\sum_{\substack{x<q_{1} q_{2} m \leq 2 X \\ z \leq q_{2}<q_{1}<2 X^{1 / 2}}} \rho\left(m, q_{2}\right) \leq 0.99 \frac{X}{\log X}
$$

Recall $\rho(n, z)=1_{p \mid n \Longrightarrow p>z}$. Let $n \in[X, 2 X], z=X^{0.185}$. By Buchstab

$$
\begin{aligned}
1_{n \in \mathbb{P}} & =\rho\left(n, 2 X^{1 / 2}\right)=\rho(n, z)-\sum_{\substack{n=q m \\
z \leq q<2 X^{1 / 2}}} \rho(m, q) \\
& =\rho(n, z)-\sum_{\substack{n=q m \\
z \leq q<2 X^{1 / 2}}} \rho(m, z)+\sum_{\substack{n=q_{1} q_{2} m \\
z \leq q_{2}<q_{1}<2 X^{1 / 2}}} \rho\left(m, q_{2}\right) \\
& \geq \rho(n, z)-\sum_{\substack{n=q m \\
z \leq q<2 X^{1 / 2}}} \rho(m, z)=: \rho^{-}(n)
\end{aligned}
$$

Now z has been chosen in such a way that by PNT

$$
\sum_{X<q_{1} q_{2} m \leq 2 X} \rho\left(m, q_{2}\right) \leq 0.99 \frac{X}{\log X} \Longrightarrow \sum_{X<n \leq 2 X} \rho^{-}(n) \geq 0.01 \frac{X}{\log X}
$$

$$
z \leq q_{2}<q_{1}<2 X^{1 / 2}
$$

$$
\rho^{-}(n)=\rho(n, z)-\sum_{\substack{n=q m \\ z \leq q<2 X^{1 / 2}}} \rho(m, z)
$$

$$
\begin{aligned}
& \rho^{-}(n)= \rho(n, z)- \\
&= \rho\left(n, X^{\varepsilon^{2}}\right)-\sum_{\substack{n=q m \\
z \leq q<2 X^{1 / 2}}} \rho(m, z) \\
&+\sum_{\substack{n=m p \\
X^{\varepsilon^{2} \leq q<z}}} \rho(m, q)-\sum_{\substack{n=q m \\
z \leq q<2 X^{1 / 2}}} \rho\left(m, X^{\left.\varepsilon^{2}\right)} \sum_{n=q_{1} q_{2} m} \rho\left(m, q_{1}\right)\right. \\
& X^{\varepsilon^{2} \leq q_{1}<z \leq q_{2}<2 X^{1 / 2}}
\end{aligned}
$$

$$
\begin{aligned}
\rho^{-}(n) & =\rho(n, z)-\sum_{\substack{n=q m \\
z \leq q<2 X^{1 / 2}}} \rho(m, z) \\
& =\rho\left(n, X^{\varepsilon^{2}}\right)-\sum_{\substack{n=m p \\
X^{\varepsilon^{2}} \leq q<z}} \rho(m, q)-\sum_{\substack{n=q m \\
z \leq q<2 X^{1 / 2}}} \rho\left(m, X^{\varepsilon^{2}}\right) \\
& +\sum_{\substack{n=q_{1} q_{2} m}} \rho\left(m, q_{1}\right) \\
& X^{\varepsilon^{2} \leq q_{1}<z \leq q_{2}<2 X^{1 / 2}}
\end{aligned}
$$

By the fundamental lemma of the sieve, the first and third terms are more-or-less type I sums

$$
\sum_{n=r m, r \leq X^{1 / 2+\varepsilon}} a_{r}
$$

$$
\begin{aligned}
& \rho^{-}(n)= \rho(n, z)-\sum_{\substack{n=q m \\
z \leq q<2 X^{1 / 2}}} \rho(m, z) \\
&= \rho\left(n, X^{\varepsilon^{2}}\right)-\sum_{\substack{n=m p \\
X^{\varepsilon^{2}} \leq q<z}} \rho(m, q)-\sum_{\substack{n=q m \\
z \leq q<2 X^{1 / 2}}} \rho\left(m, X^{\varepsilon^{2}}\right) \\
&+\sum_{n=q_{1} q_{2} m} \rho\left(m, q_{1}\right) \\
& X^{\varepsilon^{2} \leq q_{1}<z \leq q_{2}<2 X^{1 / 2}}
\end{aligned}
$$

By the fundamental lemma of the sieve, the first and third terms are more-or-less type I sums

$$
\sum_{n=r m, r \leq X^{1 / 2+\varepsilon}} a_{r}
$$

and the second and fourth terms type II sums

$$
\sum_{\substack{n=q r \\ X^{\varepsilon^{2}} \leq q<z}} 1_{q \in \mathbb{P}} a_{r}
$$

Reduction to Dirichlet polynomials

- By Perron's formula

$$
\sum_{\substack{x<p_{1} n \leq x+H \\ p_{1} \sim P_{1}}} \rho^{-}(n) \approx \int_{-X / H}^{X / H} P_{1}(1+i t) P(1+i t) \frac{(x+H)^{1+i t}-x^{i t}}{1+i t} d t
$$

where

$$
P_{1}(s):=\sum_{p_{1} \sim P_{1}} \frac{1}{p_{1}^{s}}, \quad P(s):=\sum_{X /\left(2 P_{1}\right) \leq n \leq 4 X / P_{1}} \frac{\rho^{-}(n)}{n^{s}},
$$

Reduction to Dirichlet polynomials

- By Perron's formula

$$
\sum_{\substack{x<p_{1} n \leq x+H \\ p_{1} \sim P_{1}}} \rho^{-}(n) \approx \int_{-X / H}^{X / H} P_{1}(1+i t) P(1+i t) \frac{(x+H)^{1+i t}-x^{i t}}{1+i t} d t
$$

where

$$
P_{1}(s):=\sum_{p_{1} \sim P_{1}} \frac{1}{p_{1}^{s}}, \quad P(s):=\sum_{X /\left(2 P_{1}\right) \leq n \leq 4 X / P_{1}} \frac{\rho^{-}(n)}{n^{s}},
$$

- Studying the mean square over $x \in[X, 2 X]$, it more-or-less suffices to show that

$$
\int_{X^{1 / 1000}}^{X / H}\left|P_{1}(1+i t)\right|^{2}|P(1+i t)|^{2} d t \ll \frac{1}{(\log X)^{2+\varepsilon}} .
$$

Dirichlet polynomials

- Mean value theorem:

$$
\int_{-T}^{T}\left|\sum_{n \sim N} a_{n} n^{i t}\right|^{2} d t=(2 T+O(N)) \sum_{n \leq N}\left|a_{n}\right|^{2}
$$

Dirichlet polynomials

- Mean value theorem:

$$
\int_{-T}^{T}\left|\sum_{n \sim N} a_{n} n^{i t}\right|^{2} d t=(2 T+O(N)) \sum_{n \leq N}\left|a_{n}\right|^{2}
$$

- Deshouillers-Iwaniec mean value theorem: Let $N \leq T$ and $A \leq T^{1 / 5}$. Then

$$
\int_{T / 2}^{T}\left|\sum_{n \sim N} n^{i t}\right|^{4}\left|\sum_{m \sim A} a_{m} m^{i t}\right|^{2} d t<_{\eta} T^{1+\eta} \sum_{m \sim A}\left|a_{m}\right|^{2}
$$

Dirichlet polynomials

- Mean value theorem:

$$
\int_{-T}^{T}\left|\sum_{n \sim N} a_{n} n^{i t}\right|^{2} d t=(2 T+O(N)) \sum_{n \leq N}\left|a_{n}\right|^{2}
$$

- Deshouillers-Iwaniec mean value theorem: Let $N \leq T$ and $A \leq T^{1 / 5}$. Then

$$
\int_{T / 2}^{T}\left|\sum_{n \sim N} n^{i t}\right|^{4}\left|\sum_{m \sim A} a_{m} m^{i t}\right|^{2} d t<_{\eta} T^{1+\eta} \sum_{m \sim A}\left|a_{m}\right|^{2}
$$

- Heath-Brown's sparse mean value theorem. Let $\mathcal{M} \subseteq[1, T], N \geq T^{2 / 3}$, and $\left|\varepsilon_{m}\right|,\left|a_{n}\right| \leq 1$. Then

$$
\int_{-T}^{T}\left|\sum_{m \in \mathcal{M}} \varepsilon_{m} m^{i t}\right|^{2}\left|\sum_{n \sim N} a_{n} n^{i t}\right|^{2} d t \ll_{\eta}|\mathcal{M}|^{2} N^{2}+N^{\eta}|\mathcal{M}| N T .
$$

Dirichlet polynomials

- We wish to show that

$$
\int_{X^{1 / 1000}}^{X / H}\left|P_{1}(1+i t)\right|^{2}|P(1+i t)|^{2} d t \ll \frac{1}{(\log X)^{2+\varepsilon}} .
$$

- We wish to show that

$$
\int_{X^{1 / 1000}}^{X / H}\left|P_{1}(1+i t)\right|^{2}|P(1+i t)|^{2} d t \ll \frac{1}{(\log X)^{2+\varepsilon}} .
$$

- We partition $\left[X^{1 / 1000}, X / H\right]=\mathcal{T} \cup \mathcal{U}$ with

$$
\mathcal{T}:=\left\{t \in\left[X^{1 / 1000}, X / H\right]:\left|P_{1}(1+i t)\right| \leq P_{1}^{-\varepsilon}\right\} .
$$

- We wish to show that

$$
\int_{X^{1 / 1000}}^{X / H}\left|P_{1}(1+i t)\right|^{2}|P(1+i t)|^{2} d t \ll \frac{1}{(\log X)^{2+\varepsilon}} .
$$

- We partition $\left[X^{1 / 1000}, X / H\right]=\mathcal{T} \cup \mathcal{U}$ with

$$
\mathcal{T}:=\left\{t \in\left[X^{1 / 1000}, X / H\right]:\left|P_{1}(1+i t)\right| \leq P_{1}^{-\varepsilon}\right\} .
$$

- For $t \in \mathcal{T}$ use the pointwise bound $\left|P_{1}(1+i t)\right| \leq P_{1}^{-\varepsilon}$ and estimate the mean square of $P(1+i t)$ using (an improved) mean value theorem.
- Recall that $\rho^{-}(n)$ can be decomposed type I and II sums

$$
\sum_{n=r m, r \leq X^{1 / 2+\varepsilon}} a_{r} \quad \text { and } \sum_{\substack{n=q r \\ X^{\varepsilon^{2}} \leq q<z}} 1_{q \in \mathbb{P} a_{r}}
$$

- Suffices to show, for every $R \leq X^{1 / 2+\varepsilon}$, type I estimate

$$
\int_{\mathcal{U}}\left|\sum_{r \sim R} \frac{a_{r}}{r^{1+i t}}\right|^{2}\left|\sum_{m \sim X /\left(P_{1} R\right)} \frac{1}{m^{1+i t}}\right|^{2} d t \ll \frac{1}{(\log X)^{100}}
$$

and, for every $Q \in\left[X^{\varepsilon}, z\right]$, type II estimate

$$
\int_{\mathcal{U}}\left|\sum_{r \sim X /\left(P_{1} Q\right)} \frac{a_{r}}{r^{1+i t}}\right|^{2}\left|\sum_{q \sim Q} \frac{1_{q \in \mathbb{P}}}{q^{1+i t}}\right|^{2} d t \ll \frac{1}{(\log X)^{100}}
$$

Type I estimate

- Recall $\mathcal{U}:=\left\{t \in\left[X^{1 / 1000}, X / H\right]:\left|P_{1}(1+i t)\right|>P_{1}^{-\varepsilon}\right\}$.
- Recall $\mathcal{U}:=\left\{t \in\left[X^{1 / 1000}, X / H\right]:\left|P_{1}(1+i t)\right|>P_{1}^{-\varepsilon}\right\}$.
- We wish to show that, for every $R \leq X^{1 / 2+\varepsilon}$.

$$
\int_{\mathcal{U}}\left|\sum_{r \sim R} \frac{a_{r}}{r^{1+i t}}\right|^{2}\left|\sum_{m \sim X /\left(P_{1} R\right)} \frac{1}{m^{1+i t}}\right|^{2} d t \ll \frac{1}{(\log X)^{100}}
$$

- Recall $\mathcal{U}:=\left\{t \in\left[X^{1 / 1000}, X / H\right]:\left|P_{1}(1+i t)\right|>P_{1}^{-\varepsilon}\right\}$.
- We wish to show that, for every $R \leq X^{1 / 2+\varepsilon}$.

$$
\int_{\mathcal{U}}\left|\sum_{r \sim R} \frac{a_{r}}{r^{1+i t}}\right|^{2}\left|\sum_{m \sim X /\left(P_{1} R\right)} \frac{1}{m^{1+i t}}\right|^{2} d t \ll \frac{1}{(\log X)^{100}}
$$

- Choose k so that $P_{1}^{k} \asymp T^{1 / 10}$. For $t \in \mathcal{U}$, $1 \leq\left|P_{1}(1+i t)\right|^{k} P_{1}^{k \varepsilon}$. Hence by C -S the above integral is

$$
\begin{aligned}
& \ll P_{1}^{k \varepsilon}\left(\int_{X^{1 / 1000}}^{X / H}\left|\sum_{r \sim R} \frac{a_{r}}{r^{1+i t}}\right|^{4}\right)^{1 / 2} \\
& \cdot\left(\left.\left.\int_{X^{1 / 1000}}^{X / H}\right|_{m \sim X /\left(P_{1} R\right)} \frac{1}{m^{1+i t}}\right|^{4}\left|P_{1}(1+i t)\right|^{2 k} d t\right)^{1 / 2}
\end{aligned}
$$

- Recall $\mathcal{U}:=\left\{t \in\left[X^{1 / 1000}, X / H\right]:\left|P_{1}(1+i t)\right|>P_{1}^{-\varepsilon}\right\}$.
- We wish to show that, for every $R \leq X^{1 / 2+\varepsilon}$.

$$
\int_{\mathcal{U}}\left|\sum_{r \sim R} \frac{a_{r}}{r^{1+i t}}\right|^{2}\left|\sum_{m \sim X /\left(P_{1} R\right)} \frac{1}{m^{1+i t}}\right|^{2} d t \ll \frac{1}{(\log X)^{100}}
$$

- Choose k so that $P_{1}^{k} \asymp T^{1 / 10}$. For $t \in \mathcal{U}$, $1 \leq\left|P_{1}(1+i t)\right|^{k} P_{1}^{k \varepsilon}$. Hence by C - S the above integral is

$$
\begin{aligned}
& \ll P_{1}^{k \varepsilon}\left(\int_{X^{1 / 1000}}^{X / H}\left|\sum_{r \sim R} \frac{a_{r}}{r^{1+i t}}\right|^{4}\right)^{1 / 2} \\
& \cdot\left(\left.\left.\int_{X^{1 / 1000}}^{X / H}\right|_{m \sim X /\left(P_{1} R\right)} \frac{1}{m^{1+i t}}\right|^{4}\left|P_{1}(1+i t)\right|^{2 k} d t\right)^{1 / 2}
\end{aligned}
$$

- The claim follows from MVT and Deshouillers-Iwaniec MVT.
- Recall $\mathcal{U}:=\left\{t \in\left[X^{1 / 1000}, X / H\right]:\left|P_{1}(1+i t)\right|>P_{1}^{-\varepsilon}\right\}$. Need to show, for every $Q \in\left[X^{\varepsilon^{2}}, z\right]$,

$$
\int_{\mathcal{U}}\left|\sum_{r \sim X /\left(P_{1} Q\right)} \frac{a_{r}}{r^{1+i t}}\right|^{2}\left|\sum_{q \sim Q} \frac{1_{q \in \mathbb{P}}}{q^{1+i t}}\right|^{2} d t \ll \frac{1}{(\log X)^{100}}
$$

- Recall $\mathcal{U}:=\left\{t \in\left[X^{1 / 1000}, X / H\right]:\left|P_{1}(1+i t)\right|>P_{1}^{-\varepsilon}\right\}$. Need to show, for every $Q \in\left[X^{\varepsilon^{2}}, z\right]$,

$$
\int_{\mathcal{U}}\left|\sum_{r \sim X /\left(P_{1} Q\right)} \frac{a_{r}}{r^{1+i t}}\right|^{2}\left|\sum_{q \sim Q} \frac{1_{q \in \mathbb{P}}}{q^{1+i t}}\right|^{2} d t \ll \frac{1}{(\log X)^{100}}
$$

- Further split \mathcal{U} into $\ll \log X$ sets \mathcal{U}_{σ}, where

$$
\mathcal{U}_{\sigma}:=\left\{t \in \mathcal{U}:\left|\sum_{q \sim Q} \frac{1_{q \in \mathbb{P}}}{q^{1+i t}}\right| \in\left(Q^{-\sigma}, 2 Q^{-\sigma}\right]\right\} .
$$

- Recall $\mathcal{U}:=\left\{t \in\left[X^{1 / 1000}, X / H\right]:\left|P_{1}(1+i t)\right|>P_{1}^{-\varepsilon}\right\}$. Need to show, for every $Q \in\left[X^{\varepsilon^{2}}, z\right]$,

$$
\int_{\mathcal{U}}\left|\sum_{r \sim X /\left(P_{1} Q\right)} \frac{a_{r}}{r^{1+i t}}\right|^{2}\left|\sum_{q \sim Q} \frac{1_{q \in \mathbb{P}}}{q^{1+i t}}\right|^{2} d t \ll \frac{1}{(\log X)^{100}}
$$

- Further split \mathcal{U} into $\ll \log X$ sets \mathcal{U}_{σ}, where

$$
\mathcal{U}_{\sigma}:=\left\{t \in \mathcal{U}:\left|\sum_{q \sim Q} \frac{1_{q \in \mathbb{P}}}{q^{1+i t}}\right| \in\left(Q^{-\sigma}, 2 Q^{-\sigma}\right]\right\} .
$$

- For $\sigma \leq 0.237$, apply Jutila's large value estimate.
- Recall $\mathcal{U}:=\left\{t \in\left[X^{1 / 1000}, X / H\right]:\left|P_{1}(1+i t)\right|>P_{1}^{-\varepsilon}\right\}$. Need to show, for every $Q \in\left[X^{\varepsilon^{2}}, z\right]$,

$$
\int_{\mathcal{U}}\left|\sum_{r \sim X /\left(P_{1} Q\right)} \frac{a_{r}}{r^{1+i t}}\right|^{2}\left|\sum_{q \sim Q} \frac{1_{q \in \mathbb{P}}}{q^{1+i t}}\right|^{2} d t \ll \frac{1}{(\log X)^{100}}
$$

- Further split \mathcal{U} into $\ll \log X$ sets \mathcal{U}_{σ}, where

$$
\mathcal{U}_{\sigma}:=\left\{t \in \mathcal{U}:\left|\sum_{q \sim Q} \frac{1_{q \in \mathbb{P}}}{q^{1+i t}}\right| \in\left(Q^{-\sigma}, 2 Q^{-\sigma}\right]\right\} .
$$

- For $\sigma \leq 0.237$, apply Jutila's large value estimate.
- Can assume $\sigma>0.237$ and the claim reduces to

$$
\int_{\mathcal{U}}\left|\sum_{r \sim X /\left(P_{1} Q\right)} \frac{a_{r}}{r^{1+i t}}\right|^{2} \ll \frac{Q^{2 \cdot 0.237}}{(\log X)^{101}}
$$

Type II estimate

- Suffices to show that

$$
\int_{\mathcal{U}}\left|\sum_{r \sim X /\left(P_{1} Q\right)} \frac{a_{r}}{r^{1+i t}}\right|^{2} \ll \frac{Q^{0.474}}{(\log X)^{101}}
$$

- Suffices to show that

$$
\int_{\mathcal{U}}\left|\sum_{r \sim X /\left(P_{1} Q\right)} \frac{a_{r}}{r^{1+i t}}\right|^{2} \ll \frac{Q^{0.474}}{(\log X)^{101}}
$$

- Choose k so that $P_{1}^{k}=X^{1-o(1)}$. By
$1_{t \in \mathcal{U}} \leq|P(1+i t)|^{2 k} P^{2 \varepsilon k}$, the integral above is

$$
\left.\left.\ll P_{1}^{2 \varepsilon k} \int_{\mathcal{U}}\right|_{r \sim X /\left(P_{1} Q\right)} \frac{a_{r}}{r^{1+i t}}\right|^{2}\left|P_{1}(1+i t)\right|^{2 k} d t
$$

- Suffices to show that

$$
\int_{\mathcal{U}}\left|\sum_{r \sim X /\left(P_{1} Q\right)} \frac{a_{r}}{r^{1+i t}}\right|^{2} \ll \frac{Q^{0.474}}{(\log X)^{101}}
$$

- Choose k so that $P_{1}^{k}=X^{1-o(1)}$. By
$1_{t \in \mathcal{U}} \leq|P(1+i t)|^{2 k} P^{2 \varepsilon k}$, the integral above is

$$
\left.\left.\ll P_{1}^{2 \varepsilon k} \int_{\mathcal{U}}\right|_{r \sim X /\left(P_{1} Q\right)} \frac{a_{r}}{r^{1+i t}}\right|^{2}\left|P_{1}(1+i t)\right|^{2 k} d t
$$

- Coefficients of $P_{1}(s)^{k}$ are supported on
$P_{1}=(\log X)^{1.11}$-smooth numbers, so they have a very sparse support (of size $X^{1-1 / 1.1+o(1)}$).
- Suffices to show that

$$
\int_{\mathcal{U}}\left|\sum_{r \sim X /\left(P_{1} Q\right)} \frac{a_{r}}{r^{1+i t}}\right|^{2} \ll \frac{Q^{0.474}}{(\log X)^{101}}
$$

- Choose k so that $P_{1}^{k}=X^{1-o(1)}$. By
$1_{t \in \mathcal{U}} \leq|P(1+i t)|^{2 k} P^{2 \varepsilon k}$, the integral above is

$$
\left.\left.\ll P_{1}^{2 \varepsilon k} \int_{\mathcal{U}}\right|_{r \sim X /\left(P_{1} Q\right)} \frac{a_{r}}{r^{1+i t}}\right|^{2}\left|P_{1}(1+i t)\right|^{2 k} d t
$$

- Coefficients of $P_{1}(s)^{k}$ are supported on
$P_{1}=(\log X)^{1.11}$-smooth numbers, so they have a very sparse support (of size $X^{1-1 / 1.1+o(1)}$).
- Invoke Heath-Brown's mean value theorem for sparse Dirichlet polynomials

Outline

(1) Background and results

- Primes in short intervals
- Primes in almost all short intervals
- Almost primes in (almost all) short intervals
(2) Methods
- Harman's sieve
- Reductions
- Type I and II estimates
(3) Summary and more theorems

E_{2} numbers in almost all very short intervals

> Theorem (M.-Teräväinen (202?))
> The interval $\left(x-(\log X)^{2.1}, x\right]$ contains E_{2}-numbers for almost all $x \in[X / 2, X]$.

Theorem (M.-Teräväinen (202?))

The interval $\left(x-(\log X)^{2.1}, x\right]$ contains E_{2}-numbers for almost all $x \in[X / 2, X]$.

- It is not difficult to adapt the argument to show that under Lindelöf one gets down to $2+\varepsilon$. 2 is also the limit under RH.

Theorem (M.-Teräväinen (202?))

The interval $\left(x-(\log X)^{2.1}, x\right]$ contains E_{2}-numbers for almost all $x \in[X / 2, X]$.

- It is not difficult to adapt the argument to show that under Lindelöf one gets down to $2+\varepsilon .2$ is also the limit under RH.
- Actually, with some work, density hypothesis seems to suffice for $2+\varepsilon$. But this is another story.
- We study $p_{1} p_{2} \in\left(x-(\log X)^{2.11}, x\right]$ with
$p_{1} \sim P_{1}:=(\log X)^{1.11}$, i.e. one of the primes is very small.
- We study $p_{1} p_{2} \in\left(x-(\log X)^{2.11}, x\right]$ with $p_{1} \sim P_{1}:=(\log X)^{1.11}$, i.e. one of the primes is very small.
- For p_{2}, use Harman's sieve to find a suitable minorant $\rho^{-}(n) \leq 1_{n \in \mathbb{P}}$ and reduce to studying, for $H=(\log X)^{2.11}$,

$$
\int_{X^{1 / 1000}}^{X / H}\left|\sum_{p_{1} \sim P_{1}} \frac{1}{p_{1}^{1+i t}} \sum_{n \sim X / P_{1}} \frac{\rho^{-}(n)}{n^{1+i t}}\right|^{2} d t
$$

- We study $p_{1} p_{2} \in\left(x-(\log X)^{2.11}, x\right]$ with $p_{1} \sim P_{1}:=(\log X)^{1.11}$, i.e. one of the primes is very small.
- For p_{2}, use Harman's sieve to find a suitable minorant $\rho^{-}(n) \leq 1_{n \in \mathbb{P}}$ and reduce to studying, for $H=(\log X)^{2.11}$,

$$
\int_{X^{1 / 1000}}^{X / H}\left|\sum_{p_{1} \sim P_{1}} \frac{1}{p_{1}^{1+i t}} \sum_{n \sim X / P_{1}} \frac{\rho^{-}(n)}{n^{1+i t}}\right|^{2} d t
$$

- If $\left|\sum_{p_{1} \sim P_{1}} p_{1}^{-1-i t}\right| \leq P^{-\varepsilon}$, easy.
- Otherwise, decompose $\rho^{-}(n)$ as appropriate type I and type II sums.
- We study $p_{1} p_{2} \in\left(x-(\log X)^{2.11}, x\right]$ with $p_{1} \sim P_{1}:=(\log X)^{1.11}$, i.e. one of the primes is very small.
- For p_{2}, use Harman's sieve to find a suitable minorant $\rho^{-}(n) \leq 1_{n \in \mathbb{P}}$ and reduce to studying, for $H=(\log X)^{2.11}$,

$$
\int_{X^{1 / 1000}}^{X / H}\left|\sum_{p_{1} \sim P_{1}} \frac{1}{p_{1}^{1+i t}} \sum_{n \sim X / P_{1}} \frac{\rho^{-}(n)}{n^{1+i t}}\right|^{2} d t
$$

- If $\left|\sum_{p_{1} \sim P_{1}} p_{1}^{-1-i t}\right| \leq P^{-\varepsilon}$, easy.
- Otherwise, decompose $\rho^{-}(n)$ as appropriate type I and type II sums.
- In each case we amplify by $P^{k \varepsilon}\left|\sum_{p_{1} \sim P_{1}} p_{1}^{-1-i t}\right|^{k} \geq 1$.
- We study $p_{1} p_{2} \in\left(x-(\log X)^{2.11}, x\right]$ with $p_{1} \sim P_{1}:=(\log X)^{1.11}$, i.e. one of the primes is very small.
- For p_{2}, use Harman's sieve to find a suitable minorant $\rho^{-}(n) \leq 1_{n \in \mathbb{P}}$ and reduce to studying, for $H=(\log X)^{2.11}$,

$$
\int_{X^{1 / 1000}}^{X / H}\left|\sum_{p_{1} \sim P_{1}} \frac{1}{p_{1}^{1+i t}} \sum_{n \sim X / P_{1}} \frac{\rho^{-}(n)}{n^{1+i t}}\right|^{2} d t
$$

- If $\left|\sum_{p_{1} \sim P_{1}} p_{1}^{-1-i t}\right| \leq P^{-\varepsilon}$, easy.
- Otherwise, decompose $\rho^{-}(n)$ as appropriate type I and type II sums.
- In each case we amplify by $P^{k \varepsilon}\left|\sum_{p_{1} \sim P_{1}} p_{1}^{-1-i t}\right|^{k} \geq 1$.
- We use mean value theorem of Deshouillers-Iwaniec for type I sums.
- For type II sums we use large value theorems and Heath-Brown's recent sparse mean value theorem.

The Dirichlet polynomial estimate concerning E_{2} numbers in almost all short intervals also gives

Theorem (M.-Teräväinen (202?))

The interval $\left(x-\sqrt{x}(\log x)^{1.55}, x\right]$ contains E_{3} numbers for every large x.

Some more theorems

The Dirichlet polynomial estimate concerning E_{2} numbers in almost all short intervals also gives

Theorem (M.-Teräväinen (202?))

The interval $\left(x-\sqrt{x}(\log x)^{1.55}, x\right]$ contains E_{3} numbers for every large x.

Our earlier work gave an asymptotic formula for E_{2} numbers in all intervals:

Theorem (M.-Teräväinen (202?))

$$
\sum_{\substack{x<p_{1} p_{2} \leq x+H \\ p_{j} \in \mathbb{P}}} 1=H \frac{\log \log x}{\log x}+O\left(H \frac{\log \log \log x}{\log x}\right), \quad H \geq x^{0.55+\varepsilon}
$$

Thank you!

