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Sarnak’s conjecture

(S) limN→∞
1
N

∑
n¬N f (T nx)µ(n) = 0 for all dynamical

systems (X ,T ) with h(T ) = 0, f ∈ C (X ) and x ∈ X (Sarnak,
2010).
What about other multiplicative functions? Say u : N→ D.
limN→∞

1
N

∑
n¬N f (T nx)u(n) = 0 for all dynamical systems

(X ,T ) with h(T ) = 0, f ∈ C (X ) and x ∈ X?
What happens if u = λ? Then

1
N

∑
n¬N

f (T nx)λ(n) =
1
N

∑
n¬N

f (T nx)

∑
d2|n

µ(n/d2)


=

1
N

∑
n¬N

∑
d2|n

µ(n/d2)f ((T d2
)n/d

2
x)

=
∑

d¬
√
N

1
d2 ·

1
N/d2

∑
n¬N/d2

µ(n)f ((T d2
)nx),

so Möbius orthogonality implies Liouville orthogonality.
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Sarnak’s conjecture

Liouville orthogonality implies Möbius orthogonality: use the identity
µ(n) =

∑
d2|n µ(d)λ(n/d

2) or use dynamics (joinings of zero entropy
systems remain of zero entropy):1

1
N

∑
n¬N

f (T nx)µ(n) = 1
N

∑
n¬N

f (T nx)µ2(n)λ(n) =
1
N

∑
n¬N

(f ⊗ Z0)((T × S)n(x ,µ2))λ(n)→ 0; the point (x ,µ2) is
completely deterministic (we use a theorem that Sarnak’s conjecture is
equivalent to the validity of (S) for each completely deterministic x ∈ X ,
El Abdalauoi, Kułaga-Przymus, L., de la Rue, 2014).

But what to do with a general multiplicative u? We assume that u is
aperiodic (i.e. is orthogonal to all periodic sequences).

In 2010 it was reasonable to think that (S) holds if µ is replaced by such a
u because of Elliott’s conjecture! We use here the famous implication: the
Chowla conjecture implies Sarnak’s conjecture (Sarnak 2010, Tao 2012).

In 2015, Matomäki, Radziwiłł and Tao disproved Elliott’s conjecture (in
fact they disproved even the “Chowla conjecture of order 2” for an
aperiodic u).

1Here: Z0 : {0, 1}Z → {0, 1}, Z0((yn)) = y0.
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Topological dynamics. Subshifts

Topological dynamical system is a pair (X ,T ), where X is a
compact metric space and T : X → X is a homeomorphism.
A – compact alphabet (usually A ⊂ D, where D is the unit
disc); if X ⊂ AZ is closed and S-invariant, where for y ∈ X ,
(Sy)(n) := y(n + 1), n ∈ Z (left shift), then (X ,S) is a
(topological) dynamical system, so called subshift.
If u ∈ AZ, then u determines a subshift Xu := {Snu : n ∈ Z}.
If u ∈ AN then we may extend it symmetrically u(−n) = u(n)
(u(0) ∈ A). Then consider Xu ...
Consider the Liouville function λ(n) = (−1)Ω(n) for n ­ 1;
here A = {−1, 1}, and we set λ(−n) = λ(n) and λ(0) = 1;
(Xλ,S) is the Liouville subshift (Xλ ⊂ {−1, 1}Z).
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Topological dynamics. Visible measures and (quasi-)generic
points

M(X ) - space of probabilistic Borel measures on a compact metric space
X ; M(X ) is compact in the weak∗ topology.

Me(X ,T ) ⊂ M(X ,T ) ⊂ M(X ): set of T -invariant measure (closed
subspace) and ergodic measures (extremal points).

M(X ) ∋ 1
Nk

∑
n¬Nk
δTnx → µ, then µ ∈ M(X ,T ) (in particular,

M(X ,T ) ̸= ∅).
A point x ∈ X is called generic for µ ∈ M(X ,T ), if 1

N

∑
n¬N
δTnx → µ,

that is, for each f ∈ C(X ), we have

1
N

∑
n¬N

f (T nx) =

∫
X

f d

(
1
N

∑
n¬N

δTnx

)
→
∫
X

f dµ.

If the convergence takes place along a subsequence, x is called
quasi-generic.

Each point is quasi-generic for a measure in M(X ,T ).

V (x) := {µ ∈ M(X ,T ) : x is quasi-generic for µ} – visible measures.
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Furstenberg systems

M(X ) ∋ 1
LNk

∑
n¬Nk

1
nδT nx → µ, (here LN =

∑
n¬N

1
n ) then

µ ∈ M(X ,T ).
V log(x) := {µ ∈ M(X ,T ) :
x is logarithmically quasi-generic for µ}.
Either |V (x)| = 1 or V (x) is uncountable (and connected).
Let A ⊂ D be compact and u ∈ AZ. We can consider
V (u) = VS(u).

Definition

Given u ∈ AZ, by a Furstenberg system of it, we mean a
measure-theoretic system (Xu , κ,S), where κ ∈ V (u) is arbitrary.

Logarithmic Furstenberg systems are defined similarly...
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Chowla conjecture and Furstenberg systems

Chowla conjecture (1965):

lim
N→∞

1
N

∑
1¬n¬N

λ(n + a1) · . . . · λ(n + ak) = 0

for any choice of 0 ¬ a1 < . . . < ak , k ­ 1.

It is equivalent to: λ is a generic point for the Bernoulli
measure in {−1, 1}Z, i.e. V (λ) = {B(1/2, 1/2)}.
It implies Xλ = {−1, 1}Z.
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Chowla type conjecture in totally aperiodic case versus
Furstenberg systems

Recall: u : N→ D is multiplicative if u(mn) = u(m)u(n) whenever
(m, n) = 1. If u : N→ S1 is aperiodic (i.e. its mean along any arithmetic
sequence exists and equals zero), and all powers uk (k ­ 1) are still
aperiodic,2 then the analog of Chowla conjecture for u becomes:

Chowla type conjecture for u : N→ S1

lim
N→∞

1
N

∑
n¬N

ur1(n+a1)·. . .·urk (n+ak)us1(n + b1)· . . . ·usℓ(n + bℓ)=0

for all powers ru, st ∈ N and {a1, . . . , ak} ∩ {b1, . . . , bℓ} = ∅.

It is equivalent to: u is generic for Haar measure on (S1)Z, i.e.
V (u) = {Leb⊗ZS1 }.
It implies Xu = (S1)Z and the topological entropy is infinite.

2u is totally aperiodic.
8 / 24



Chowla type conjecture in totally aperiodic case versus
Furstenberg systems

Recall: u : N→ D is multiplicative if u(mn) = u(m)u(n) whenever
(m, n) = 1. If u : N→ S1 is aperiodic (i.e. its mean along any arithmetic
sequence exists and equals zero), and all powers uk (k ­ 1) are still
aperiodic,2 then the analog of Chowla conjecture for u becomes:

Chowla type conjecture for u : N→ S1

lim
N→∞

1
N

∑
n¬N

ur1(n+a1)·. . .·urk (n+ak)us1(n + b1)· . . . ·usℓ(n + bℓ)=0

for all powers ru, st ∈ N and {a1, . . . , ak} ∩ {b1, . . . , bℓ} = ∅.

It is equivalent to: u is generic for Haar measure on (S1)Z, i.e.
V (u) = {Leb⊗ZS1 }.
It implies Xu = (S1)Z and the topological entropy is infinite.

2u is totally aperiodic.
8 / 24



Chowla type conjecture in totally aperiodic case versus
Furstenberg systems

Recall: u : N→ D is multiplicative if u(mn) = u(m)u(n) whenever
(m, n) = 1. If u : N→ S1 is aperiodic (i.e. its mean along any arithmetic
sequence exists and equals zero), and all powers uk (k ­ 1) are still
aperiodic,2 then the analog of Chowla conjecture for u becomes:

Chowla type conjecture for u : N→ S1

lim
N→∞

1
N

∑
n¬N

ur1(n+a1)·. . .·urk (n+ak)us1(n + b1)· . . . ·usℓ(n + bℓ)=0

for all powers ru, st ∈ N and {a1, . . . , ak} ∩ {b1, . . . , bℓ} = ∅.

It is equivalent to: u is generic for Haar measure on (S1)Z, i.e.
V (u) = {Leb⊗ZS1 }.
It implies Xu = (S1)Z and the topological entropy is infinite.

2u is totally aperiodic.
8 / 24



Some words on general conjectures

Elliott’s conjecture3 (1992).
Disproved by Matomäki, Radziwiłł and Tao in 2015 (2-Chowla
fails...).
Corrected Elliott’s conjecture (by Matomäki, Radziwiłł, Tao)
for so called strongly aperiodic functions.

Questions:
What about Furstenberg systems of aperiodic multiplicative
functions? What are possible entropies? Is topological entropy
positive? Does Chowla hold along a subsequence?

Asked as Problem 7.3 during the Sarnak’s Conjecture
workshop at AIM in December 2018.

3In particular, it implies that Chowla holds for (totally) aperiodic
multiplicative functions. Furstenberg systems for even strongly aperiodic but
not totally aperiodic complex valued multiplicative functions, less clear: nitλ(n).
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Some words on general conjectures

Frantzikinakis-Host’s conjectures (2017, 2018)

(A) Each multiplicative function u : N→ [−1, 1] has a unique
(logarithmic) Furstenberg system. The system is isomorphic to the
direct product of an ergodic procyclic system and a Bernoulli
system.
(B) For each multiplicative function u : N→ {−1, 1} the unique
(logarithmic) Furstenberg system is either Bernoulli or an ergodic
odometer. It is Bernoulli if and only if u is aperiodic.
(C) All (logarithmic) Furstenberg systems of any multiplicative
function u : N→ S1 have ergodic components isomorphic to direct
products of procyclic systems and Bernoulli systems.
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Archimedean characters

Archimedean character is a completely multiplicative function
n 7→ nit with some fixed t ∈ R.
Archimedean characters have no mean:
1
N

∑
1¬n¬N nit = N it

1+it + o(1), in particular, they are not
aperiodic.∣∣∣(n + 1)it − nit

∣∣∣ = ∣∣∣e it log(1+1/n) − 1
∣∣∣ −−−→

n→∞
0,

Archimedean characters are slowly varying arithmetic functions
u:

u(n + 1)− u(n) −−−→
n→∞

0.

In particular, they are mean slowly varying function:
1
N

∑
n¬N |u(n + 1)− u(n)| −−−−→

N→∞
0.

If u : N→ S1 is mean slowly varying and is multiplicative
then u is an Archimedean character, Klurman 2017.
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Furstenberg systems of mean slowly varying functions

Proposition
The arithmetic function u : N→ D is mean slowly varying if and
only if all Furstenberg systems of u are measure-theoretically
isomorphic to the action of the identitya on some probability space.

aThat is, they are identities ...

Let 1
Nm

∑
n¬Nm

δSnu → ν, Z0 : Xu → D, Z0(y) := y(0),
Zn := Z0 ◦ Sn.
Let u be mean slowly varying.
Eν
[
|Z1 − Z0|

]
= limm→∞

1
Nm

∑
n¬Nm

|u(n + 1)− u(n)| = 0.
It follows that Z1 = Z0 ν-a.e., and more generally by
S-invariance, for each k ∈ N, we also have Zk+1 = Zk ν-a.e.
Hence, ν is concentrated on the subset of sequences with
identical coordinates, and S = Id ν-a.e.
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Furstenberg systems of Archimedean characters and slightly
beyond

u(n) = ni , n ­ 1;

Let g(e2πix) = 2πe2πx

e2π−1 (x ∈ [0, 1)).

Proposition

We have Xu = {(. . . , z , z , . . .) : z ∈ S1} ∪ {Snu : n ∈ N}.a The
family of Furstenberg systems of u(n) = ni consists of uncountably
many different systems given by all rotations of the measure
g(z)dz . All of them are isomorphic to the identity on the circle
with Lebesgue measure.

aThe topological entropy is zero. Xu identified with S1+one orbit.

In fact, each invariant measure for an arbitrary slowly varying
function yields identity (topological entropy is zero).
n 7→ nit has only one logarithmic Furstenberg system (equal to
Lebesgue measure; Frantzikinakis and Host, 2018).
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Locally Archimedean characters. The MRT class

Definition (Matomäki, Radziwiłł, Tao; 2015)

A completely multiplicative function u : N→ S1 belongs to the
MRT class if there exist two increasing sequences of integers (tm)
and (sm) such that, for each m ­ 1, we have the following
properties:

• tm < sm+1 < s2
m+1 ¬ tm+1,

• for each prime p ∈ (tm, tm+1], u(p) = pism+1 ,

• for each prime p ¬ tm,
∣∣∣u(p)− pism+1

∣∣∣ < 1
t2m
.
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How to get functions in MRT?

We have to define u(p) for each prime p and to construct the
sequences (tm) and (sm) (done inductively).
Start by choosing an integer t1 ∈ N and set, for each prime
p ¬ t1, u(p) := 1.
Assume that for some m ­ 1 we have already defined tm and
u(p) for each p ¬ tm.
In the Cartesian product

∏
p¬tm S1, we consider the sequence

of points ((
pis
)
p¬tm

)
s∈N
.

Since the numbers log p, p ¬ tm, are linearly independent over
the integers, this sequence is dense in

∏
p¬tm S1. Thus, we can

choose sm+1 > tm so that u(p) = pism+1 + O( 1
t2m
) is satisfied.
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Basics of the construction

The growth of sm+1/tm is necessarily superpolynomial: for
each β > 0, tm < sβm+1 for m large enough.
It is shown by Matomäki, Radziwiłł and Tao that once
sm+1 > etm for m ­ 1, the resulting u is aperiodic.4

4In fact, totally aperiodic.
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Main result

Main Theorem (Gomilko, L., de la Rue, 2020)

Let u be in the MRT class. Then, for each d ­ 0, there is a
Furstenberg system (Xu , νd ,S) of u which is measure-theoretically
isomorphica to the unipotent system

Ad : (xd , xd−1, . . . , x0) 7→ (xd , xd−1 + xd , . . . , x0 + x1)

on Td+1 equipped with the (d + 1)-dimensional Lebesgue measure.
Furthermore, the Bernoulli shift

(
(S1)Z, (LebS1)⊗Z, S

)
is also a

Furstenberg system of u, i.e. the Chowla conjecture holds for u
along a subsequence. In particular, Xu = (S1)Z and
htop(Xu ,S) =∞.

aUnder the isomorphism, the stationary process (Zn)n∈Z corresponds to
(Fd ◦ An

d)n∈Z, where Fd(xd , . . . , x0) = e2πix0 .
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Discussion...

Hence, the family {νd : d ­ 0} makes the process(es) (Zn)
more and more independent. Since VS(u) is closed,

lim
d→∞
νd = (LebS1)

Z ∈ VS(u).

Haar measure on (S1)Z is a Furstenberg system of u.5

Xu = (S1)Z. (NOTE THAT it means that, for each ε > 0,
ALL ε-configurations appear in u).6

htop(Xu , S) =∞.

5I.e. Chowla conjecture fails for MRT class by a result of Matomäki,
Radziwiłł and Tao, but it holds along a subsequence.

6More than that: For each configuration, its ε-nbhd appears with positive
upper density on u.
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Other properties of members of MRT class

If u is an MRT function then it does not satisfy Sarnak’s
conjecture (a zero entropy system which correlates with u is
close to a one given by a slowly varying function).
u does not satisfy the “zero mean property on typical short
interval”; cf. Matomäki-Radziwiłł theorem for strongly
aperiodic functions

lim
M,H→∞,H=o(M)

1
M

∑
1¬m¬M

∣∣∣∣∣∣ 1H
∑

0¬h<H
u(m + h)

∣∣∣∣∣∣ = 0.

(it is enough to know that an identity is a Furstenberg system).
For u also the logarithmic Chowla conjecture holds along a
subsequence.
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Logarithmic Chowla conjecture
u satisfies logarithmic Chowla conjecture along a subsequence - proof:

E log
N (u) = 1

LN

∑
1¬n¬N−1

1
n+1En(u) + 1

LN
EN(u), where

E log
N (u) := 1

LN

∑
1¬n¬N

1
nδSn−1u

If we fix 1
d+1 < βd < β

′
d <

1
d , 1 < β0 < β′0 < 2 then EN(u) is

uniformly close to νd for sβdm+1 ¬ N ¬ s
β′d
m+1 (and m large

enough).
For parameters ε > 0, 1 ¬ D1 < D2 we show that
D1(1− ε)

∑
D1¬d¬D2

(
1
d −

1
d+1

)
νd + αρ is a logarithmic

Furstenberg system.

(∗) D1
∑

d­D1

(
1
d −

1
d+1

)
νd ∈ VS(u).

In this latter Furstenberg systems we see D1-independence,
then, once more, a weak limit passage yields a Furstenberg
system of iid type.

Remark: Note that (∗) DISPROVES Frantzikinakis-Host’s
conjecture!
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Question

Question: Can we find a Furstenberg system for some u ∈MRT
which is a (non-trivial) direct product of a Bernoulli and a nilpotent
system? (N. Frantzikinakis, F. Richter).
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Thank you!
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