On autocorrelations of some aperiodic multiplicative functions

Mariusz Lemańczyk

Nicolaus Copernicus University, Toruń

ELAZ 2022, Poznań, 22.08.2022

Based on a joint work with Alex Gomilko and Thierry de la Rue

Sarnak's conjecture

- (S) $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n \leqslant N} f\left(T^{n} x\right) \mu(n)=0$ for all dynamical systems (X, T) with $h(T)=0, f \in C(X)$ and $x \in X$ (Sarnak, 2010).
- What about other multiplicative functions? Say $u: \mathbb{N} \rightarrow \mathbb{D}$.
- $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n \leqslant N} f\left(T^{n} x\right) \boldsymbol{u}(n)=0$ for all dynamical systems (X, T) with $h(T)=0, f \in C(X)$ and $x \in X$?
- What happens if $u=\lambda$? Then

$$
\begin{aligned}
\frac{1}{N} \sum_{n \leqslant N} f\left(T^{n} x\right) \lambda(n) & =\frac{1}{N} \sum_{n \leqslant N} f\left(T^{n} x\right)\left(\sum_{d^{2} \mid n} \mu\left(n / d^{2}\right)\right) \\
& =\frac{1}{N} \sum_{n \leqslant N} \sum_{d^{2} \mid n} \mu\left(n / d^{2}\right) f\left(\left(T^{d^{2}}\right)^{n / d^{2}} x\right) \\
& =\sum_{d \leqslant \sqrt{N}} \frac{1}{d^{2}} \cdot \frac{1}{N / d^{2}} \sum_{n \leqslant N / d^{2}} \mu(n) f\left(\left(T^{d^{2}}\right)^{n} x\right)
\end{aligned}
$$

- so Möbius orthogonality implies Liouville orthogonality.

Sarnak's conjecture

- (S) $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n \leqslant N} f\left(T^{n} x\right) \mu(n)=0$ for all dynamical systems (X, T) with $h(T)=0, f \in C(X)$ and $x \in X$ (Sarnak, 2010).
- What about other multiplicative functions? Say $\boldsymbol{u}: \mathbb{N} \rightarrow \mathbb{D}$.
- $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n \leqslant N} f\left(T^{n} x\right) \boldsymbol{u}(n)=0$ for all dynamical systems (X, T) with $h(T)=0, f \in C(X)$ and $x \in X$?

- so Möbius orthogonality implies Liouville orthogonality.

Sarnak's conjecture

- (S) $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n \leqslant N} f\left(T^{n} x\right) \mu(n)=0$ for all dynamical systems (X, T) with $h(T)=0, f \in C(X)$ and $x \in X$ (Sarnak, 2010).

■ What about other multiplicative functions? Say $\boldsymbol{u}: \mathbb{N} \rightarrow \mathbb{D}$.

- $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n \leqslant N} f\left(T^{n} x\right) \boldsymbol{u}(n)=0$ for all dynamical systems (X, T) with $h(T)=0, f \in C(X)$ and $x \in X$?
■ What happens if $\boldsymbol{u}=\boldsymbol{\lambda}$? Then

$$
\begin{aligned}
\frac{1}{N} \sum_{n \leqslant N} f\left(T^{n} x\right) \lambda(n) & =\frac{1}{N} \sum_{n \leqslant N} f\left(T^{n} x\right)\left(\sum_{d^{2} \mid n} \mu\left(n / d^{2}\right)\right) \\
& =\frac{1}{N} \sum_{n \leqslant N} \sum_{d^{2} \mid n} \mu\left(n / d^{2}\right) f\left(\left(T^{d^{2}}\right)^{n / d^{2}} x\right) \\
& =\sum_{d \leqslant \sqrt{N}} \frac{1}{d^{2}} \cdot \frac{1}{N / d^{2}} \sum_{n \leqslant N / d^{2}} \mu(n) f\left(\left(T^{d^{2}}\right)^{n} x\right)
\end{aligned}
$$

- so Möbius orthogonality implies Liouville orthogonality.

Sarnak's conjecture

- Liouville orthogonality implies Möbius orthogonality: use the identity $\boldsymbol{\mu}(n)=\sum_{d^{2} \mid n} \boldsymbol{\mu}(d) \boldsymbol{\lambda}\left(n / d^{2}\right)$ or use dynamics (joinings of zero entropy systems remain of zero entropy): ${ }^{1}$
- $\frac{1}{N} \sum_{n \leqslant N} f\left(T^{n} x\right) \boldsymbol{\mu}(n)=\frac{1}{N} \sum_{n \leqslant N} f\left(T^{n} x\right) \mu^{2}(n) \lambda(n)=$ $\frac{1}{N} \sum_{n \leqslant N}\left(f \otimes Z_{0}\right)\left((T \times S)^{n}\left(x, \mu^{2}\right)\right) \boldsymbol{\lambda}(n) \rightarrow 0$; the point $\left(x, \mu^{2}\right)$ is completely deterministic (we use a theorem that Sarnak's conjecture is equivalent to the validity of (S) for each completely deterministic $x \in X$, El Abdalauoi, Kułaga-Przymus, L., de la Rue, 2014).
aperiodic (i.e. is orthogonal to all periodic sequences)
- In 2010 it was reasonable to think that (S) holds if μ is replaced by such a
u because of Elliott's conjecture! We use here the famous implication
(Sarnak 2010, Tao 2012)
In 2015, Matomäki, Radziwiłł and Tao disproved Elliott's conjecture (in fact they disproved even the "Chowla conjecture of order 2" for an aperiodic \boldsymbol{u}).

[^0]
Sarnak's conjecture

- Liouville orthogonality implies Möbius orthogonality: use the identity $\boldsymbol{\mu}(n)=\sum_{d^{2} \mid n} \boldsymbol{\mu}(d) \boldsymbol{\lambda}\left(n / d^{2}\right)$ or use dynamics (joinings of zero entropy systems remain of zero entropy): ${ }^{1}$
- $\frac{1}{N} \sum_{n \leqslant N} f\left(T^{n} x\right) \boldsymbol{\mu}(n)=\frac{1}{N} \sum_{n \leqslant N} f\left(T^{n} x\right) \mu^{2}(n) \lambda(n)=$ $\frac{1}{N} \sum_{n \leqslant N}\left(f \otimes Z_{0}\right)\left((T \times S)^{n}\left(x, \mu^{2}\right)\right) \boldsymbol{\lambda}(n) \rightarrow 0$; the point $\left(x, \mu^{2}\right)$ is completely deterministic (we use a theorem that Sarnak's conjecture is equivalent to the validity of (S) for each completely deterministic $x \in X$, El Abdalauoi, Kułaga-Przymus, L., de la Rue, 2014).
- But what to do with a general multiplicative \boldsymbol{u} ? We assume that \boldsymbol{u} is aperiodic (i.e. is orthogonal to all periodic sequences).
In 2010 it was reasonable to think that (S) holds if μ is replaced by such a
\boldsymbol{u} because of Elliott's conjecture! We use here the famous implication
(Sarnak 2010, Tao 2012)
- In 2015, Matomäki, Radziwiłł and Tao disproved Elliott's conjecture (in fact they disproved even the "Chowla conjecture of order 2 " for an aperiodic \boldsymbol{u}).

[^1]
Sarnak's conjecture

- Liouville orthogonality implies Möbius orthogonality: use the identity $\boldsymbol{\mu}(n)=\sum_{d^{2} \mid n} \boldsymbol{\mu}(d) \boldsymbol{\lambda}\left(n / d^{2}\right)$ or use dynamics (joinings of zero entropy systems remain of zero entropy): ${ }^{1}$
- $\frac{1}{N} \sum_{n \leqslant N} f\left(T^{n} x\right) \boldsymbol{\mu}(n)=\frac{1}{N} \sum_{n \leqslant N} f\left(T^{n} x\right) \mu^{2}(n) \lambda(n)=$ $\frac{1}{N} \sum_{n \leqslant N}\left(f \otimes Z_{0}\right)\left((T \times S)^{n}\left(x, \mu^{2}\right)\right) \boldsymbol{\lambda}(n) \rightarrow 0$; the point $\left(x, \mu^{2}\right)$ is completely deterministic (we use a theorem that Sarnak's conjecture is equivalent to the validity of (S) for each completely deterministic $x \in X$, El Abdalauoi, Kułaga-Przymus, L., de la Rue, 2014).
- But what to do with a general multiplicative \boldsymbol{u} ? We assume that \boldsymbol{u} is aperiodic (i.e. is orthogonal to all periodic sequences).
- In 2010 it was reasonable to think that (S) holds if $\boldsymbol{\mu}$ is replaced by such a \boldsymbol{u} because of Elliott's conjecture! We use here the famous implication: the Chowla conjecture implies Sarnak's conjecture (Sarnak 2010, Tao 2012).

In 2015, Matomäki, Radziwiłł and Tao disproved Elliott's conjecture (in fact they disproved even the "Chowla conjecture of order 2 " for an aperiodic \boldsymbol{u}).

[^2]- Liouville orthogonality implies Möbius orthogonality: use the identity $\boldsymbol{\mu}(n)=\sum_{d^{2} \mid n} \boldsymbol{\mu}(d) \boldsymbol{\lambda}\left(n / d^{2}\right)$ or use dynamics (joinings of zero entropy systems remain of zero entropy): ${ }^{1}$
- $\frac{1}{N} \sum_{n \leqslant N} f\left(T^{n} x\right) \boldsymbol{\mu}(n)=\frac{1}{N} \sum_{n \leqslant N} f\left(T^{n} x\right) \mu^{2}(n) \lambda(n)=$ $\frac{1}{N} \sum_{n \leqslant N}\left(f \otimes Z_{0}\right)\left((T \times S)^{n}\left(x, \mu^{2}\right)\right) \lambda(n) \rightarrow 0$; the point $\left(x, \mu^{2}\right)$ is completely deterministic (we use a theorem that Sarnak's conjecture is equivalent to the validity of (S) for each completely deterministic $x \in X$, El Abdalauoi, Kułaga-Przymus, L., de la Rue, 2014).
- But what to do with a general multiplicative \boldsymbol{u} ? We assume that \boldsymbol{u} is aperiodic (i.e. is orthogonal to all periodic sequences).
- In 2010 it was reasonable to think that (S) holds if $\boldsymbol{\mu}$ is replaced by such a \boldsymbol{u} because of Elliott's conjecture! We use here the famous implication: the Chowla conjecture implies Sarnak's conjecture (Sarnak 2010, Tao 2012).
- In 2015, Matomäki, Radziwiłł and Tao disproved Elliott's conjecture (in fact they disproved even the "Chowla conjecture of order 2" for an aperiodic \boldsymbol{u}).

[^3]
Topological dynamics. Subshifts

- Topological dynamical system is a pair (X, T), where X is a compact metric space and $T: X \rightarrow X$ is a homeomorphism.
- A - compact alphabet (usually $A \subset \mathbb{D}$, where \mathbb{D} is the unit disc); if $X \subset A^{\mathbb{Z}}$ is closed and S-invariant, where for $y \in X$ $n \in \mathbb{Z}$ (left shift), then (X, S) is a (topological) dynamical system, so called subshift.
- If $\boldsymbol{u} \in A^{\mathbb{Z}}$, then u determines a subshift
- If $\boldsymbol{u} \in A^{\mathbb{N}}$ then we may extend it symmetrically $u(-n)=u(n)$ $(u(0) \in A)$. Then consider X_{u}
- Consider the Liouville function $\boldsymbol{\lambda}(n)=(-1)^{\Omega(n)}$ for $n \geqslant 1$; here $A=\{-1,1\}$, and we set $\boldsymbol{\lambda}(-n)=\boldsymbol{\lambda}(n)$ and $\boldsymbol{\lambda}(0)=1$; $\left(X_{\lambda}, S\right)$ is the Liouville subshift $\left(X_{\lambda} \subset\{-1,1\}^{\mathbb{Z}}\right)$

Topological dynamics. Subshifts

- Topological dynamical system is a pair (X, T), where X is a compact metric space and $T: X \rightarrow X$ is a homeomorphism.
■ A - compact alphabet (usually $A \subset \mathbb{D}$, where \mathbb{D} is the unit disc); if $X \subset A^{\mathbb{Z}}$ is closed and S-invariant, where for $y \in X$, $(S y)(n):=y(n+1), n \in \mathbb{Z}$ (left shift), then (X, S) is a (topological) dynamical system, so called subshift.
- If $\boldsymbol{u} \in A^{\mathbb{Z}}$, then \boldsymbol{u} determines a subshift
- If $\boldsymbol{u} \in A^{\mathbb{N}}$ then we may extend it symmetrically $\boldsymbol{u}(-n)=\boldsymbol{u}(n)$
\square
Consider the Liouville function $\lambda(n)=(-1)^{\Omega(n)}$ for $n \geqslant 1$; here $A=\{-1,1\}$, and we set $\boldsymbol{\lambda}(-n)=\boldsymbol{\lambda}(n)$ and $\boldsymbol{\lambda}(0)=1$;

Topological dynamics. Subshifts

- Topological dynamical system is a pair (X, T), where X is a compact metric space and $T: X \rightarrow X$ is a homeomorphism.
- A - compact alphabet (usually $A \subset \mathbb{D}$, where \mathbb{D} is the unit disc); if $X \subset A^{\mathbb{Z}}$ is closed and S-invariant, where for $y \in X$, $(S y)(n):=y(n+1), n \in \mathbb{Z}$ (left shift), then (X, S) is a (topological) dynamical system, so called subshift.
- If $\boldsymbol{u} \in A^{\mathbb{Z}}$, then \boldsymbol{u} determines a subshift $X_{u}:=\overline{\left\{S^{n} \boldsymbol{u}: n \in \mathbb{Z}\right\}}$.
- If $\boldsymbol{u} \in A^{\mathbb{N}}$ then we may extend it symmetrically $\boldsymbol{u}(-n)=\boldsymbol{u}(n)$ $(\boldsymbol{u}(0) \in A)$. Then consider $X_{\boldsymbol{u}} \ldots$
- Topological dynamical system is a pair (X, T), where X is a compact metric space and $T: X \rightarrow X$ is a homeomorphism.
- A - compact alphabet (usually $A \subset \mathbb{D}$, where \mathbb{D} is the unit disc); if $X \subset A^{\mathbb{Z}}$ is closed and S-invariant, where for $y \in X$, $(S y)(n):=y(n+1), n \in \mathbb{Z}$ (left shift), then (X, S) is a (topological) dynamical system, so called subshift.
- If $\boldsymbol{u} \in A^{\mathbb{Z}}$, then \boldsymbol{u} determines a subshift $X_{u}:=\overline{\left\{S^{n} \boldsymbol{u}: n \in \mathbb{Z}\right\}}$.
- If $\boldsymbol{u} \in A^{\mathbb{N}}$ then we may extend it symmetrically $\boldsymbol{u}(-n)=\boldsymbol{u}(n)$ $(\boldsymbol{u}(0) \in A)$. Then consider $X_{\boldsymbol{u}} \ldots$
- Consider the Liouville function $\boldsymbol{\lambda}(n)=(-1)^{\Omega(n)}$ for $n \geqslant 1$; here $A=\{-1,1\}$, and we set $\boldsymbol{\lambda}(-n)=\boldsymbol{\lambda}(n)$ and $\boldsymbol{\lambda}(0)=1$; $\left(X_{\lambda}, S\right)$ is the Liouville subshift $\left(X_{\lambda} \subset\{-1,1\}^{\mathbb{Z}}\right)$.

Topological dynamics. Visible measures and (quasi-)generic points

- $M(X)$ - space of probabilistic Borel measures on a compact metric space $X ; M(X)$ is compact in the weak* topology.
- $M^{e}(X, T) \subset M(X, T) \subset M(X)$: set of T-invariant measure (closed subspace) and ergodic measures (extremal points).
- $M(X) \ni \frac{1}{N_{k}} \sum_{n \leqslant N_{k}} \delta_{T^{n_{X}}} \rightarrow \mu$, then $\mu \in M(X, T)$ (in particular, $M(X, T) \neq \emptyset)$.
- A point $x \in X$ is called generic for $\mu \in M(X, T)$, if $\frac{1}{N} \sum_{n \leqslant N} \delta_{T^{n} X} \rightarrow \mu$. that is, for each $f \in C(X)$, we have
- If the convergence takes place along a subsequence, x is called quasi-generic.
- Each point is quasi-generic for a measure in $M(X, T)$.

Topological dynamics. Visible measures and (quasi-)generic points

- $M(X)$ - space of probabilistic Borel measures on a compact metric space $X ; M(X)$ is compact in the weak* topology.
- $M^{e}(X, T) \subset M(X, T) \subset M(X)$: set of T-invariant measure (closed subspace) and ergodic measures (extremal points).
- $M(X) \ni \frac{1}{N_{k}} \sum_{n \leqslant N_{k}} \delta_{T^{n} \times} \rightarrow \mu$, then $\mu \in M(X, T)$ (in particular, $M(X, T) \neq \emptyset)$.
- A point $x \in X$ is called generic for $\mu \in M(X, T)$, if $\frac{1}{N} \sum_{n \leqslant N} \delta_{T^{n_{X}}} \rightarrow \mu$, that is, for each $f \in C(X)$, we have

$$
\frac{1}{N} \sum_{n \leqslant N} f\left(T^{n} x\right)=\int_{x} f d\left(\frac{1}{N} \sum_{n \leqslant N} \delta_{T^{n} x}\right) \rightarrow \int_{X} f d \mu
$$

- If the convergence takes place along a subsequence, x is called quasi-generic.
- Each point is quasi-generic for a measure in $M(X, T)$.

Topological dynamics. Visible measures and (quasi-)generic points

- $M(X)$ - space of probabilistic Borel measures on a compact metric space $X ; M(X)$ is compact in the weak* topology.
- $M^{e}(X, T) \subset M(X, T) \subset M(X)$: set of T-invariant measure (closed subspace) and ergodic measures (extremal points).
- $M(X) \ni \frac{1}{N_{k}} \sum_{n \leqslant N_{k}} \delta_{T^{n_{X}}} \rightarrow \mu$, then $\mu \in M(X, T)$ (in particular, $M(X, T) \neq \emptyset)$.
- A point $x \in X$ is called generic for $\mu \in M(X, T)$, if $\frac{1}{N} \sum_{n \leqslant N} \delta_{T^{n_{X}}} \rightarrow \mu$, that is, for each $f \in C(X)$, we have

$$
\frac{1}{N} \sum_{n \leqslant N} f\left(T^{n} x\right)=\int_{X} f d\left(\frac{1}{N} \sum_{n \leqslant N} \delta_{T^{n} x}\right) \rightarrow \int_{X} f d \mu
$$

- If the convergence takes place along a subsequence, x is called quasi-generic.
- Each point is quasi-generic for a measure in $M(X, T)$.
- $V(x):=\{\mu \in M(X, T): x$ is quasi-generic for $\mu\}$ - visible measures.

Furstenberg systems

- $M(X) \ni \frac{1}{L_{N_{k}}} \sum_{n \leqslant N_{k}} \frac{1}{n} \delta_{T^{n} X} \rightarrow \mu,\left(\right.$ here $\left.L_{N}=\sum_{n \leqslant N} \frac{1}{n}\right)$ then $\mu \in M(X, T)$.
- $V^{\log }(x):=\{\mu \in M(X, T)$:
x is logarithmically quasi-generic for $\mu\}$.
■ Either $|V(x)|=1$ or $V(x)$ is uncountable (and connected).
■ Let $A \subset \mathbb{D}$ be compact and $\boldsymbol{u} \in A^{\mathbb{Z}}$. We can consider $V(\boldsymbol{u})=V_{S}(\boldsymbol{u})$.
\square
- Logarithmic Furstenberg systems are defined similarly.

Furstenberg systems

- $M(X) \ni \frac{1}{L_{N_{k}}} \sum_{n \leqslant N_{k}} \frac{1}{n} \delta_{T^{n} X} \rightarrow \mu$, (here $L_{N}=\sum_{n \leqslant N} \frac{1}{n}$) then $\mu \in M(X, T)$.
- $V^{\log }(x):=\{\mu \in M(X, T)$:
x is logarithmically quasi-generic for $\mu\}$.
- Either $|V(x)|=1$ or $V(x)$ is uncountable (and connected).

■ Let $A \subset \mathbb{D}$ be compact and $\boldsymbol{u} \in A^{\mathbb{Z}}$. We can consider $V(\boldsymbol{u})=V_{S}(\boldsymbol{u})$.

Definition

Given $\boldsymbol{u} \in A^{\mathbb{Z}}$, by a Furstenberg system of it, we mean a measure-theoretic system $\left(X_{\boldsymbol{u}}, \kappa, S\right)$, where $\kappa \in V(\boldsymbol{u})$ is arbitrary.

- Logarithmic Furstenberg systems are defined similarly..
- $M(X) \ni \frac{1}{L_{N_{k}}} \sum_{n \leqslant N_{k}} \frac{1}{n} \delta_{T^{n} X} \rightarrow \mu$, (here $L_{N}=\sum_{n \leqslant N} \frac{1}{n}$) then $\mu \in M(X, T)$.
- $V^{\log }(x):=\{\mu \in M(X, T)$:
x is logarithmically quasi-generic for $\mu\}$.
- Either $|V(x)|=1$ or $V(x)$ is uncountable (and connected).

■ Let $A \subset \mathbb{D}$ be compact and $\boldsymbol{u} \in A^{\mathbb{Z}}$. We can consider $V(\boldsymbol{u})=V_{S}(\boldsymbol{u})$.

Definition

Given $\boldsymbol{u} \in A^{\mathbb{Z}}$, by a Furstenberg system of it, we mean a measure-theoretic system $\left(X_{\boldsymbol{u}}, \kappa, S\right)$, where $\kappa \in V(\boldsymbol{u})$ is arbitrary.

- Logarithmic Furstenberg systems are defined similarly...

Chowla conjecture and Furstenberg systems

Chowla conjecture (1965):

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{1 \leqslant n \leqslant N} \lambda\left(n+a_{1}\right) \cdot \ldots \cdot \boldsymbol{\lambda}\left(n+a_{k}\right)=0
$$

for any choice of $0 \leqslant a_{1}<\ldots<a_{k}, k \geqslant 1$.

- It is equivalent to:

$$
\text { in }\{-1,1\}^{\mathbb{Z}}, \text { i.e. } V(\lambda)=\{B(1 / 2,1 / 2)\}
$$

- It implies $X_{\lambda}=\{-1,1\}^{\mathbb{Z}}$.

Chowla conjecture and Furstenberg systems

Chowla conjecture (1965):

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{1 \leqslant n \leqslant N} \lambda\left(n+a_{1}\right) \cdot \ldots \cdot \lambda\left(n+a_{k}\right)=0
$$

for any choice of $0 \leqslant a_{1}<\ldots<a_{k}, k \geqslant 1$.
■ It is equivalent to: λ is a generic point for the Bernoulli
measure in $\{-1,1\}^{\mathbb{Z}}$, i.e. $V(\boldsymbol{\lambda})=\{B(1 / 2,1 / 2)\}$.

- It implies $X_{\lambda}=\{-1,1\}^{\mathbb{Z}}$.

Chowla conjecture and Furstenberg systems

Chowla conjecture (1965):

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{1 \leqslant n \leqslant N} \boldsymbol{\lambda}\left(n+a_{1}\right) \cdot \ldots \cdot \boldsymbol{\lambda}\left(n+a_{k}\right)=0
$$

for any choice of $0 \leqslant a_{1}<\ldots<a_{k}, k \geqslant 1$.
■ It is equivalent to: λ is a generic point for the Bernoulli
measure in $\{-1,1\}^{\mathbb{Z}}$, i.e. $V(\boldsymbol{\lambda})=\{B(1 / 2,1 / 2)\}$.

- It implies $X_{\lambda}=\{-1,1\}^{\mathbb{Z}}$.

Chowla type conjecture in totally aperiodic case versus Furstenberg systems

- Recall: $\boldsymbol{u}: \mathbb{N} \rightarrow \mathbb{D}$ is multiplicative if $\boldsymbol{u}(m n)=\boldsymbol{u}(m) \boldsymbol{u}(n)$ whenever $(m, n)=1$. If $\boldsymbol{u}: \mathbb{N} \rightarrow \mathbb{S}^{1}$ is aperiodic (i.e. its mean along any arithmetic sequence exists and equals zero), and all powers $\boldsymbol{u}^{k}(k \geqslant 1)$ are still aperiodic, ${ }^{2}$ then the analog of Chowla conjecture for \boldsymbol{u} becomes:

- It is equivalent to: \boldsymbol{u} is generic for Haar measure on $\left(\mathbb{S}^{1}\right)^{\mathbb{Z}}$, i.e. $V(\boldsymbol{u})=\left\{\operatorname{Leb}_{\mathbb{S} 1}^{\otimes \mathbb{Z}}\right\}$
- It implies $X_{u}=\left(\mathbb{S}^{1}\right)^{\mathbb{Z}}$ and the topological entropy is infinite.

[^4]
Chowla type conjecture in totally aperiodic case versus Furstenberg systems

- Recall: $\boldsymbol{u}: \mathbb{N} \rightarrow \mathbb{D}$ is multiplicative if $\boldsymbol{u}(m n)=\boldsymbol{u}(m) \boldsymbol{u}(n)$ whenever $(m, n)=1$. If $\boldsymbol{u}: \mathbb{N} \rightarrow \mathbb{S}^{1}$ is aperiodic (i.e. its mean along any arithmetic sequence exists and equals zero), and all powers $\boldsymbol{u}^{k}(k \geqslant 1)$ are still aperiodic, ${ }^{2}$ then the analog of Chowla conjecture for \boldsymbol{u} becomes:

Chowla type conjecture for $\boldsymbol{u}: \mathbb{N} \rightarrow \mathbb{S}^{1}$

$\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n \leqslant N} \boldsymbol{u}^{r_{1}}\left(n+a_{1}\right) \cdots \cdot \boldsymbol{u}^{r_{k}}\left(n+a_{k}\right) \overline{\boldsymbol{u}^{s_{1}}\left(n+b_{1}\right) \cdot \ldots \cdot \boldsymbol{u}^{s_{\ell}}\left(n+b_{\ell}\right)}=0$
for all powers $r_{u}, s_{t} \in \mathbb{N}$ and $\left\{a_{1}, \ldots, a_{k}\right\} \cap\left\{b_{1}, \ldots, b_{\ell}\right\}=\emptyset$.

[^5]
Chowla type conjecture in totally aperiodic case versus Furstenberg systems

- Recall: $\boldsymbol{u}: \mathbb{N} \rightarrow \mathbb{D}$ is multiplicative if $\boldsymbol{u}(m n)=\boldsymbol{u}(m) \boldsymbol{u}(n)$ whenever $(m, n)=1$. If $\boldsymbol{u}: \mathbb{N} \rightarrow \mathbb{S}^{1}$ is aperiodic (i.e. its mean along any arithmetic sequence exists and equals zero), and all powers $\boldsymbol{u}^{k}(k \geqslant 1)$ are still aperiodic, ${ }^{2}$ then the analog of Chowla conjecture for \boldsymbol{u} becomes:

Chowla type conjecture for $\boldsymbol{u}: \mathbb{N} \rightarrow \mathbb{S}^{1}$

$\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n \leqslant N} \boldsymbol{u}^{r_{1}}\left(n+a_{1}\right) \cdots \cdot \boldsymbol{u}^{r_{k}}\left(n+a_{k}\right) \overline{\boldsymbol{u}^{s_{1}}\left(n+b_{1}\right) \cdot \ldots \cdot \boldsymbol{u}^{s_{\ell}}\left(n+b_{\ell}\right)}=0$
for all powers $r_{u}, s_{t} \in \mathbb{N}$ and $\left\{a_{1}, \ldots, a_{k}\right\} \cap\left\{b_{1}, \ldots, b_{\ell}\right\}=\emptyset$.

- It is equivalent to: \boldsymbol{u} is generic for Haar measure on $\left(\mathbb{S}^{1}\right)^{\mathbb{Z}}$, i.e.

$$
V(\boldsymbol{u})=\left\{L e b_{\mathbb{S}^{1}}^{\otimes \mathbb{Z}}\right\} .
$$

- It implies $X_{\boldsymbol{u}}=\left(\mathbb{S}^{1}\right)^{\mathbb{Z}}$ and the topological entropy is infinite.

[^6]
Some words on general conjectures

■ Elliott's conjecture ${ }^{3}$ (1992).
by Matomäki, Radziwiłł and Tao in 2015 (2-Chowla fails...)

- Corrected Elliott's conjecture (by Matomäki, Radziwiłł, Tao) for so called strongly aperiodic functions.

- Asked as Problem 7.3 during the Sarnak's Conjecture workshop at AIM in December 2018.
> ${ }^{3}$ In particular, it implies that Chowla holds for (totally) aperiodic multiplicative functions. Furstenberg systems for even strongly aperiodic but not totally aperiodic complex valued multiplicative functions, less clear: $n^{i t} \boldsymbol{\lambda}(n)$.

Some words on general conjectures

- Elliott's conjecture ${ }^{3}$ (1992).

■ Disproved by Matomäki, Radziwiłł and Tao in 2015 (2-Chowla fails...).

```
Corrected Elliott's conjecture (by Matomäki, Radziwiłł, Tao)
for so called strongly aperiodic functions.
```

\square
What about Furstenberg systems of aperiodic multiplicative functions? What are possible entropies? Is topological entropy positive? Does Chowla hold along a subsequence?

- Asked as Problem 7.3 during the Sarnak's Conjecture workshop at AIM in December 2018.
> ${ }^{3}$ In particular, it implies that Chowla holds for (totally) aperiodic multiplicative functions. Furstenberg systems for even strongly aperiodic but not totally aperiodic complex valued multiplicative functions, less clear: $n^{i t} \boldsymbol{\lambda}(n)$.

Some words on general conjectures

- Elliott's conjecture ${ }^{3}$ (1992).

■ Disproved by Matomäki, Radziwiłł and Tao in 2015 (2-Chowla fails...).

- Corrected Elliott's conjecture (by Matomäki, Radziwiłł, Tao) for so called strongly aperiodic functions.

■ Asked as Problem 7.3 during the Sarnak's Conjecture workshop at AIM in December 2018.
> ${ }^{3}$ In particular, it implies that Chowla holds for (totally) aperiodic multiplicative functions. Furstenberg systems for even strongly aperiodic but not totally aperiodic complex valued multiplicative functions, less clear: $n^{i t} \boldsymbol{\lambda}(n)$.

- Elliott's conjecture ${ }^{3}$ (1992).

■ Disproved by Matomäki, Radziwiłł and Tao in 2015 (2-Chowla fails...).
■ Corrected Elliott's conjecture (by Matomäki, Radziwiłł, Tao) for so called strongly aperiodic functions.

Questions:

What about Furstenberg systems of aperiodic multiplicative functions? What are possible entropies? Is topological entropy positive? Does Chowla hold along a subsequence?

- Asked as Problem 7.3 during the Sarnak's Conjecture workshop at AIM in December 2018.
> ${ }^{3}$ In particular, it implies that Chowla holds for (totally) aperiodic multiplicative functions. Furstenberg systems for even strongly aperiodic but not totally aperiodic complex valued multiplicative functions, less clear: $n^{i t} \boldsymbol{\lambda}(n)$.

Some words on general conjectures

Frantzikinakis-Host's conjectures $(2017,2018)$

(A) Each multiplicative function $\boldsymbol{u}: \mathbb{N} \rightarrow[-1,1]$ has a unique (logarithmic) Furstenberg system. The system is isomorphic to the direct product of an ergodic procyclic system and a Bernoulli system.
> (B) For each multiplicative function $\boldsymbol{u}: \mathbb{N} \rightarrow\{-1,1\}$ the unique
> (logarithmic) Furstenberg system is either Bernoulli or an ergodic odometer. It is Bernoulli if and only if \boldsymbol{u} is aperiodic.
> (C) All (logarithmic) Furstenberg systems of any
> function $\boldsymbol{u}: \mathbb{N} \rightarrow \mathbb{S}^{1}$ have ergodic components isomorphic to direct products of procyclic systems and Bernoulli systems.

Frantzikinakis-Host's conjectures $(2017,2018)$

(A) Each multiplicative function $\boldsymbol{u}: \mathbb{N} \rightarrow[-1,1]$ has a unique (logarithmic) Furstenberg system. The system is isomorphic to the direct product of an ergodic procyclic system and a Bernoulli system.
(B) For each multiplicative function $\boldsymbol{u}: \mathbb{N} \rightarrow\{-1,1\}$ the unique (logarithmic) Furstenberg system is either Bernoulli or an ergodic odometer. It is Bernoulli if and only if \boldsymbol{u} is aperiodic.

Frantzikinakis-Host's conjectures $(2017,2018)$

(A) Each multiplicative function $\boldsymbol{u}: \mathbb{N} \rightarrow[-1,1]$ has a unique (logarithmic) Furstenberg system. The system is isomorphic to the direct product of an ergodic procyclic system and a Bernoulli system.
(B) For each multiplicative function $\boldsymbol{u}: \mathbb{N} \rightarrow\{-1,1\}$ the unique (logarithmic) Furstenberg system is either Bernoulli or an ergodic odometer. It is Bernoulli if and only if \boldsymbol{u} is aperiodic.
(C) All (logarithmic) Furstenberg systems of any multiplicative function $\boldsymbol{u}: \mathbb{N} \rightarrow \mathbb{S}^{1}$ have ergodic components isomorphic to direct products of procyclic systems and Bernoulli systems.

Archimedean characters

- Archimedean character is a completely multiplicative function $n \mapsto n^{i t}$ with some fixed $t \in \mathbb{R}$.
- Archimedean characters have no mean:
$\frac{1}{N} \sum_{1 \leqslant n \leqslant N} n^{i t}=\frac{N^{i t}}{1+i t}+\mathrm{O}(1)$, in particular, they are not aperiodic.
$\square\left|(n+1)^{i t}-n^{i t}\right|=\left|e^{i t \log (1+1 / n)}-1\right| \xrightarrow[n \rightarrow \infty]{\longrightarrow} 0$,
- Archimedean characters are slowly varying arithmetic functions u :

$$
\boldsymbol{u}(n+1)-\boldsymbol{u}(n) \xrightarrow[n \rightarrow \infty]{ } 0
$$

- In particular, they are mean slowly varying function: $\frac{1}{N} \sum_{n<N}|\boldsymbol{u}(n+1)-\boldsymbol{u}(n)| \xrightarrow[N \longrightarrow \infty]{ } 0$.
- If $\boldsymbol{u}: \mathbb{N} \rightarrow \mathbb{S}^{1}$ is mean slowly varying and is multiplicative then \boldsymbol{u} is an Archimedean character, Klurman 2017

Archimedean characters

- Archimedean character is a completely multiplicative function $n \mapsto n^{i t}$ with some fixed $t \in \mathbb{R}$.
- Archimedean characters have no mean:
$\frac{1}{N} \sum_{1 \leqslant n \leqslant N} n^{i t}=\frac{N^{j t}}{1+i t}+\mathrm{o}(1)$, in particular, they are not aperiodic.
- $\left|(n+1)^{i t}-n^{i t}\right|=\left|e^{i t \log (1+1 / n)}-1\right| \underset{n \rightarrow \infty}{\longrightarrow} 0$,
- Archimedean characters are slowly varying arithmetic functions

$$
\boldsymbol{u}(n+1)-\boldsymbol{u}(n) \xrightarrow[n \rightarrow \infty]{ } 0
$$

Archimedean characters

- Archimedean character is a completely multiplicative function $n \mapsto n^{i t}$ with some fixed $t \in \mathbb{R}$.
- Archimedean characters have no mean:
$\frac{1}{N} \sum_{1 \leqslant n \leqslant N} n^{i t}=\frac{N^{j t}}{1+i t}+o(1)$, in particular, they are not aperiodic.
■ $\left|(n+1)^{i t}-n^{i t}\right|=\left|e^{i t \log (1+1 / n)}-1\right| \underset{n \rightarrow \infty}{\longrightarrow} 0$,
- Archimedean characters are slowly varying arithmetic functions u:

$$
\boldsymbol{u}(n+1)-\boldsymbol{u}(n) \xrightarrow[n \rightarrow \infty]{ } 0
$$

- In particular, they are mean slowly varying function:
$\frac{1}{N} \sum_{n \leqslant N}|\boldsymbol{u}(n+1)-\boldsymbol{u}(n)| \xrightarrow[N \rightarrow \infty]{ } 0$.
then \boldsymbol{u} is an Archimedean character, Klurman 2017.
- Archimedean character is a completely multiplicative function $n \mapsto n^{i t}$ with some fixed $t \in \mathbb{R}$.
- Archimedean characters have no mean:
$\frac{1}{N} \sum_{1 \leqslant n \leqslant N} n^{i t}=\frac{N^{i t}}{1+i t}+o(1)$, in particular, they are not aperiodic.
$\square\left|(n+1)^{i t}-n^{i t}\right|=\left|e^{i t \log (1+1 / n)}-1\right| \underset{n \rightarrow \infty}{\longrightarrow} 0$,
- Archimedean characters are slowly varying arithmetic functions u:

$$
\boldsymbol{u}(n+1)-\boldsymbol{u}(n) \xrightarrow[n \rightarrow \infty]{ } 0
$$

- In particular, they are mean slowly varying function:
$\frac{1}{N} \sum_{n \leqslant N}|\boldsymbol{u}(n+1)-\boldsymbol{u}(n)| \xrightarrow[N \rightarrow \infty]{ } 0$.
- If $\boldsymbol{u}: \mathbb{N} \rightarrow \mathbb{S}^{1}$ is mean slowly varying and is multiplicative then \boldsymbol{u} is an Archimedean character, Klurman 2017.

Furstenberg systems of mean slowly varying functions

Proposition

The arithmetic function $\boldsymbol{u}: \mathbb{N} \rightarrow \mathbb{D}$ is mean slowly varying if and only if all Furstenberg systems of \boldsymbol{u} are measure-theoretically isomorphic to the action of the identity ${ }^{a}$ on some probability space.
${ }^{a}$ That is, they are identities ...

Furstenberg systems of mean slowly varying functions

Proposition

The arithmetic function $\boldsymbol{u}: \mathbb{N} \rightarrow \mathbb{D}$ is mean slowly varying if and only if all Furstenberg systems of \boldsymbol{u} are measure-theoretically isomorphic to the action of the identity ${ }^{a}$ on some probability space.
${ }^{a}$ That is, they are identities ...

- Let $\frac{1}{N_{m}} \sum_{n \leqslant N_{m}} \delta_{S^{n} \boldsymbol{u}} \rightarrow \nu, Z_{0}: X_{u} \rightarrow \mathbb{D}, Z_{0}(y):=y(0)$, $Z_{n}:=Z_{0} \circ S^{n}$.
- Let \boldsymbol{u} be mean slowly varying.
$\square \mathbb{E}_{\nu}\left[\left|Z_{1}-Z_{0}\right|\right]=\lim _{m \rightarrow \infty} \frac{1}{N_{m}} \sum_{n \leqslant N_{m}}|\boldsymbol{u}(n+1)-\boldsymbol{u}(n)|=0$.

> It follows that $Z_{1}=Z_{0} \nu-a . e$. , and more generally by S-invariance, for each $k \in \mathbb{N}$, we also have $Z_{k+1}=Z_{k} \nu$-a.e.
> Hence, ν is concentrated on the subset of sequences with
> identical coordinates, and $S=I d \nu$-a.e.

Furstenberg systems of mean slowly varying functions

Proposition

The arithmetic function $\boldsymbol{u}: \mathbb{N} \rightarrow \mathbb{D}$ is mean slowly varying if and only if all Furstenberg systems of \boldsymbol{u} are measure-theoretically isomorphic to the action of the identity ${ }^{a}$ on some probability space.
${ }^{a}$ That is, they are identities ...
\square Let $\frac{1}{N_{m}} \sum_{n \leqslant N_{m}} \delta_{S^{n} \boldsymbol{u}} \rightarrow \nu, Z_{0}: X_{u} \rightarrow \mathbb{D}, Z_{0}(y):=y(0)$, $Z_{n}:=Z_{0} \circ S^{n}$.

- Let \boldsymbol{u} be mean slowly varying.
$\square \mathbb{E}_{\nu}\left[\left|Z_{1}-Z_{0}\right|\right]=\lim _{m \rightarrow \infty} \frac{1}{N_{m}} \sum_{n \leqslant N_{m}}|\boldsymbol{u}(n+1)-\boldsymbol{u}(n)|=0$.
- It follows that $Z_{1}=Z_{0} \nu$-a.e., and more generally by S-invariance, for each $k \in \mathbb{N}$, we also have $Z_{k+1}=Z_{k} \nu$-a.e. Hence, ν is concentrated on the subset of sequences with identical coordinates, and $S=I d \nu$-a.e.

Furstenberg systems of Archimedean characters and slightly beyond

- $\boldsymbol{u}(n)=n^{i}, n \geqslant 1$;
- Let $g\left(e^{2 \pi i x}\right)=\frac{2 \pi e^{2 \pi x}}{e^{2 \pi}-1}(x \in[0,1))$.
\square many different systems given by all rotations of the measure $g(z) d z$. All of them are isomorphic to the identity on the circle with Lebesgue measure.
${ }^{a}$ The topological entropy is zero. X_{u} identified with $\mathbb{S}^{1}+$ one orbit.
- In fact, each invariant measure for an arbitrary slowly varying function yields identity (topological entropy is zero).
- $n \mapsto n^{i t}$ has only one logarithmic Furstenberg system (equal to Lebesgue measure; Frantzikinakis and Host, 2018).

Furstenberg systems of Archimedean characters and slightly beyond

- u(n) $=n^{i}, n \geqslant 1 ;$
- Let $g\left(e^{2 \pi i x}\right)=\frac{2 \pi e^{2 \pi x}}{e^{2 \pi}-1}(x \in[0,1))$.

Proposition

We have $X_{\boldsymbol{u}}=\left\{(\ldots, z, z, \ldots): z \in \mathbb{S}^{1}\right\} \cup\left\{S^{n} \boldsymbol{u}: n \in \mathbb{N}\right\}$. ${ }^{a}$ The family of Furstenberg systems of $\boldsymbol{u}(n)=n^{i}$ consists of uncountably many different systems given by all rotations of the measure $g(z) d z$. All of them are isomorphic to the identity on the circle with Lebesgue measure.
${ }^{a}$ The topological entropy is zero. X_{u} identified with $\mathbb{S}^{1}+$ one orbit.

- In fact, each invariant measure for an arbitrary slowly varying function yields identity (topological entropy is zero).
- $n \mapsto n^{i t}$ has only one logarithmic Furstenberg system (equal to Lebesgue measure; Frantzikinakis and Host, 2018).

Locally Archimedean characters. The MRT class

Definition (Matomäki, Radziwiłł, Tao; 2015)

A completely multiplicative function $\boldsymbol{u}: \mathbb{N} \rightarrow \mathbb{S}^{1}$ belongs to the MRT class if there exist two increasing sequences of integers $\left(t_{m}\right)$ and $\left(s_{m}\right)$ such that, for each $m \geqslant 1$, we have the following properties:

- $t_{m}<s_{m+1}<s_{m+1}^{2} \leqslant t_{m+1}$,
- for each prime $p \in\left(t_{m}, t_{m+1}\right], \boldsymbol{u}(p)=p^{i s_{m+1}}$,
- for each prime $p \leqslant t_{m},\left|\boldsymbol{u}(p)-p^{i s_{m+1}}\right|<\frac{1}{t_{m}^{2}}$.

- We have to define $\boldsymbol{u}(p)$ for each prime p and to construct the sequences $\left(t_{m}\right)$ and $\left(s_{m}\right)$ (done inductively).
- Start by choosing an integer $t_{1} \in \mathbb{N}$ and set, for each prime $p \leqslant t_{1}, \boldsymbol{u}(p):=1$.
- Assume that for some $m \geqslant 1$ we have already defined t_{m} and $u(p)$ for each $p \leqslant t_{m}$.
- In the Cartesian product $\prod_{p \leqslant t_{m}} \mathbb{S}^{1}$, we consider the sequence of points

- Since the numbers $\log p, p \leqslant t_{m}$, are linearly independent over the integers, this sequence is dense in $\prod_{p \leqslant t_{m}} \mathbb{S}^{1}$. Thus, we can choose $s_{m+1}>t_{m}$ so that $u(p)=p^{i s_{m+1}}+O\left(\frac{1}{t_{m}^{2}}\right)$ is satisfied.
- We have to define $\boldsymbol{u}(p)$ for each prime p and to construct the sequences $\left(t_{m}\right)$ and $\left(s_{m}\right)$ (done inductively).
- Start by choosing an integer $t_{1} \in \mathbb{N}$ and set, for each prime $p \leqslant t_{1}, \boldsymbol{u}(p):=1$.
- Assume that for some $m \geqslant 1$ we have already defined t_{m} and $\boldsymbol{u}(p)$ for each $p \leqslant t_{m}$.
- In the Cartesian product $\prod_{p \leqslant t_{m}} \mathbb{S}^{1}$, we consider the sequence of points

- Since the numbers $\log p, p \leqslant t_{m}$, are linearly independent over the integers, this sequence is dense in $\prod_{n \leqslant t_{m}} \mathbb{S}^{1}$. Thus, we can choose $s_{m+1}>t_{m}$ so that $u(p)=p^{i s_{m+1}}+O\left(\frac{1}{t_{m}^{2}}\right)$ is satisfied.
- We have to define $\boldsymbol{u}(p)$ for each prime p and to construct the sequences $\left(t_{m}\right)$ and $\left(s_{m}\right)$ (done inductively).
- Start by choosing an integer $t_{1} \in \mathbb{N}$ and set, for each prime $p \leqslant t_{1}, \boldsymbol{u}(p):=1$.
- Assume that for some $m \geqslant 1$ we have already defined t_{m} and $\boldsymbol{u}(p)$ for each $p \leqslant t_{m}$.
- In the Cartesian product $\prod_{p \leqslant t_{m}} \mathbb{S}^{1}$, we consider the sequence of points

$$
\left(\left(p^{i s}\right)_{p \leqslant t_{m}}\right)_{s \in \mathbb{N}}
$$

- Since the numbers $\log p, p \leqslant t_{m}$, are linearly independent over the integers, this sequence is dense in $\prod_{n \leqslant t_{m}} \mathbb{S}^{1}$. Thus, we can choose $s_{m+1}>t_{m}$ so that $u(p)=p^{i s_{m+1}}+O\left(\frac{1}{t_{m}^{2}}\right)$ is satisfied.
- We have to define $\boldsymbol{u}(p)$ for each prime p and to construct the sequences $\left(t_{m}\right)$ and (s_{m}) (done inductively).
- Start by choosing an integer $t_{1} \in \mathbb{N}$ and set, for each prime $p \leqslant t_{1}, \boldsymbol{u}(p):=1$.
- Assume that for some $m \geqslant 1$ we have already defined t_{m} and $\boldsymbol{u}(p)$ for each $p \leqslant t_{m}$.
■ In the Cartesian product $\prod_{p \leqslant t_{m}} \mathbb{S}^{1}$, we consider the sequence of points

$$
\left(\left(p^{i s}\right)_{p \leqslant t_{m}}\right)_{s \in \mathbb{N}}
$$

- Since the numbers $\log p, p \leqslant t_{m}$, are linearly independent over the integers, this sequence is dense in $\prod_{p \leqslant t_{m}} \mathbb{S}^{1}$. Thus, we can choose $s_{m+1}>t_{m}$ so that $\boldsymbol{u}(p)=p^{i s_{m+1}}+O\left(\frac{1}{t_{m}^{2}}\right)$ is satisfied.

Basics of the construction

- The growth of s_{m+1} / t_{m} is necessarily superpolynomial: for each $\beta>0, t_{m}<s_{m+1}^{\beta}$ for m large enough.
- It is shown by Matomäki, Radziwiłł and Tao that once $s_{m+1}>e^{t_{m}}$ for $m \geqslant 1$, the resulting \boldsymbol{u} is aperiodic. ${ }^{4}$

Basics of the construction

- The growth of s_{m+1} / t_{m} is necessarily superpolynomial: for each $\beta>0, t_{m}<s_{m+1}^{\beta}$ for m large enough.
■ It is shown by Matomäki, Radziwiłł and Tao that once $s_{m+1}>e^{t_{m}}$ for $m \geqslant 1$, the resulting \boldsymbol{u} is aperiodic. ${ }^{4}$

[^7]

Main result

Main Theorem (Gomilko, L., de la Rue, 2020)

Let \boldsymbol{u} be in the MRT class. Then, for each $d \geqslant 0$, there is a Furstenberg system $\left(X_{\boldsymbol{u}}, \nu_{d}, S\right)$ of \boldsymbol{u} which is measure-theoretically isomorphic ${ }^{a}$ to the unipotent system

$$
A_{d}:\left(x_{d}, x_{d-1}, \ldots, x_{0}\right) \mapsto\left(x_{d}, x_{d-1}+x_{d}, \ldots, x_{0}+x_{1}\right)
$$

on \mathbb{T}^{d+1} equipped with the $(d+1)$-dimensional Lebesgue measure.
Furthermore, the Bernoulli shift $\left(\left(\mathbb{S}^{1}\right)^{\mathbb{Z}},\left(\text { Leb }_{\mathbb{S}^{1}}\right)^{\otimes \mathbb{Z}}, S\right)$ is also a Furstenberg system of \boldsymbol{u}, i.e. the Chowla conjecture holds for u along a subsequence. In particular, $X_{u}=\left(\mathbb{S}^{1}\right)^{\mathbb{Z}}$ and $h_{\text {top }}\left(X_{u}, S\right)=\infty$.

[^8]
Discussion...

- Hence, the family $\left\{\nu_{d}: d \geqslant 0\right\}$ makes the process(es) $\left(Z_{n}\right)$ more and more independent. Since $V_{S}(\boldsymbol{u})$ is closed,

$$
\lim _{d \rightarrow \infty} \nu_{d}=\left(\operatorname{Leb}_{\mathbb{S}_{1}}\right)^{\mathbb{Z}} \in V_{S}(\boldsymbol{u}) .
$$

- Haar measure on $\left(\mathbb{S}^{1}\right)^{\mathbb{Z}}$ is a Furstenberg system of \boldsymbol{u}^{5}
- $X_{u}=\left(\mathbb{S}^{1}\right)^{\mathbb{Z}}$. (NOTE THAT it means that, for each $\varepsilon>0$ ALL ε-configurations appear in u). ${ }^{6}$

[^9]- Hence, the family $\left\{\nu_{d}: d \geqslant 0\right\}$ makes the process(es) $\left(Z_{n}\right)$ more and more independent. Since $V_{S}(\boldsymbol{u})$ is closed,

$$
\lim _{d \rightarrow \infty} \nu_{d}=\left(\operatorname{Leb}_{\mathbb{S}_{1}}\right)^{\mathbb{Z}} \in V_{S}(\boldsymbol{u})
$$

- Haar measure on $\left(\mathbb{S}^{1}\right)^{\mathbb{Z}}$ is a Furstenberg system of $\boldsymbol{u} .{ }^{5}$

[^10]- Hence, the family $\left\{\nu_{d}: d \geqslant 0\right\}$ makes the process(es) $\left(Z_{n}\right)$ more and more independent. Since $V_{S}(\boldsymbol{u})$ is closed,

$$
\lim _{d \rightarrow \infty} \nu_{d}=\left(\operatorname{Leb}_{\mathbb{S}_{1}}\right)^{\mathbb{Z}} \in V_{S}(\boldsymbol{u})
$$

- Haar measure on $\left(\mathbb{S}^{1}\right)^{\mathbb{Z}}$ is a Furstenberg system of $\boldsymbol{u} .{ }^{5}$
- $X_{\boldsymbol{u}}=\left(\mathbb{S}^{1}\right)^{\mathbb{Z}}$. (NOTE THAT it means that, for each $\varepsilon>0$, ALL ε-configurations appear in $\boldsymbol{u}) .{ }^{6}$
${ }^{5}$ I.e. Chowla conjecture fails for MRT class by a result of Matomäki, Radziwiłł and Tao, but it holds along a subsequence.
${ }^{6}$ More than that: For each configuration, its ε-nbhd appears with positive upper density on \boldsymbol{u}.
- Hence, the family $\left\{\nu_{d}: d \geqslant 0\right\}$ makes the process(es) $\left(Z_{n}\right)$ more and more independent. Since $V_{S}(\boldsymbol{u})$ is closed,

$$
\lim _{d \rightarrow \infty} \nu_{d}=\left(\operatorname{Leb}_{\mathbb{S}_{1}}\right)^{\mathbb{Z}} \in V_{S}(\boldsymbol{u})
$$

- Haar measure on $\left(\mathbb{S}^{1}\right)^{\mathbb{Z}}$ is a Furstenberg system of $\boldsymbol{u} .{ }^{5}$
- $X_{\boldsymbol{u}}=\left(\mathbb{S}^{1}\right)^{\mathbb{Z}}$. (NOTE THAT it means that, for each $\varepsilon>0$, ALL ε-configurations appear in \boldsymbol{u}). ${ }^{6}$
- $h_{\text {top }}\left(X_{\boldsymbol{u}}, S\right)=\infty$.

[^11]
Other properties of members of MRT class

- If \boldsymbol{u} is an MRT function then it does not satisfy Sarnak's conjecture (a zero entropy system which correlates with \boldsymbol{u} is close to a one given by a slowly varying function).
u does not satisfy the "zero mean property on typical short interval"; cf. Matomäki-Radziwiłł theorem for strongly aperiodic functions

(it is enough to know that an identity is a Furstenberg system)
- For $\|$ also the logarithmic Chowla conjecture holds along a subsequence.

Other properties of members of MRT class

- If \boldsymbol{u} is an MRT function then it does not satisfy Sarnak's conjecture (a zero entropy system which correlates with \boldsymbol{u} is close to a one given by a slowly varying function).
- U does not satisfy the "zero mean property on typical short interval"; cf. Matomäki-Radziwiłł theorem for strongly aperiodic functions

$$
\lim _{M, H \rightarrow \infty, H=o(M)} \frac{1}{M} \sum_{1 \leqslant m \leqslant M}\left|\frac{1}{H} \sum_{0 \leqslant h<H} \boldsymbol{u}(m+h)\right|=0 .
$$

(it is enough to know that an identity is a Furstenberg system).
subsequence.

Other properties of members of MRT class

- If \boldsymbol{u} is an MRT function then it does not satisfy Sarnak's conjecture (a zero entropy system which correlates with \boldsymbol{u} is close to a one given by a slowly varying function).
- \boldsymbol{u} does not satisfy the "zero mean property on typical short interval"; cf. Matomäki-Radziwiłł theorem for strongly aperiodic functions

$$
\lim _{M, H \rightarrow \infty, H=o(M)} \frac{1}{M} \sum_{1 \leqslant m \leqslant M}\left|\frac{1}{H} \sum_{0 \leqslant h<H} \boldsymbol{u}(m+h)\right|=0 .
$$

(it is enough to know that an identity is a Furstenberg system).

- For \boldsymbol{u} also the logarithmic Chowla conjecture holds along a subsequence.

Logarithmic Chowla conjecture

\boldsymbol{u} satisfies logarithmic Chowla conjecture along a subsequence - proof:

- $E_{N}^{\log }(\boldsymbol{u})=\frac{1}{L_{N}} \sum_{1 \leqslant n \leqslant N-1} \frac{1}{n+1} E_{n}(\boldsymbol{u})+\frac{1}{L_{N}} E_{N}(\boldsymbol{u})$, where $E_{N}^{\log }(\boldsymbol{u}):=\frac{1}{L_{N}} \sum_{1 \leqslant n \leqslant N} \frac{1}{n} \delta_{S^{n-1}} \boldsymbol{u}$
- If we fix $\frac{1}{d+1}<\beta_{d}<\beta_{d}^{\prime}<\frac{1}{d}, 1<\beta_{0}<\beta_{0}^{\prime}<2$ then $E_{N}(u)$ is
uniformly close to ν_{d} for $s_{m+1}^{\beta_{d}} \leqslant N \leqslant s_{m+1}^{\beta_{d}^{\prime}}$ (and m large enough).
- For parameters $\varepsilon>0,1 \leqslant D_{1}<D_{2}$ we show that $D_{1}(1-\varepsilon) \sum_{D_{1} \leqslant d \leqslant D_{2}}\left(\frac{1}{d}-\frac{1}{d+1}\right) \nu_{d}+\alpha \rho$ is a logarithmic Furstenberg system.

$$
D_{1} \sum_{d \geqslant D_{1}}\left(\frac{1}{d}-\frac{1}{d+1}\right) \nu_{d} \in V_{S}(\boldsymbol{u})
$$

- In this latter Furstenberg systems we see D_{1}-independence, then, once more, a weak limit passage yields a Furstenberg system of iid type.
Remark: Note that (*) DISPROVES Frantzikinakis-Host's
conjecture!

Logarithmic Chowla conjecture

\boldsymbol{u} satisfies logarithmic Chowla conjecture along a subsequence - proof:

- $E_{N}^{\log }(\boldsymbol{u})=\frac{1}{L_{N}} \sum_{1 \leqslant n \leqslant N-1} \frac{1}{n+1} E_{n}(\boldsymbol{u})+\frac{1}{L_{N}} E_{N}(\boldsymbol{u})$, where $E_{N}^{\log }(\boldsymbol{u}):=\frac{1}{L_{N}} \sum_{1 \leqslant n \leqslant N} \frac{1}{n} \delta_{S^{n-1}} \boldsymbol{u}$
- If we fix $\frac{1}{d+1}<\beta_{d}<\beta_{d}^{\prime}<\frac{1}{d}, 1<\beta_{0}<\beta_{0}^{\prime}<2$ then $E_{N}(\boldsymbol{u})$ is uniformly close to ν_{d} for $s_{m+1}^{\beta_{d}} \leqslant N \leqslant s_{m+1}^{\beta_{d}^{\prime}}$ (and m large enough).
- For parameters $\varepsilon>0,1 \leqslant D_{1}<D_{2}$ we show that $D_{1}(1-\varepsilon) \sum_{D_{1} \leqslant d \leqslant D_{2}}\left(\frac{1}{d}-\frac{1}{d+1}\right) \nu_{d}+\alpha \rho$ is a logarithmic Furstenberg system.

$$
D_{1} \sum_{d \geqslant D_{1}}\left(\frac{1}{d}-\frac{1}{d+1}\right) \nu_{d} \in V_{S}(\boldsymbol{u}) .
$$

- In this latter Furstenberg systems we see D_{1}-independence, then, once more, a weak limit passage yields a Furstenberg system of iid type.

Logarithmic Chowla conjecture

\boldsymbol{u} satisfies logarithmic Chowla conjecture along a subsequence - proof:

- $E_{N}^{\log }(\boldsymbol{u})=\frac{1}{L_{N}} \sum_{1 \leqslant n \leqslant N-1} \frac{1}{n+1} E_{n}(\boldsymbol{u})+\frac{1}{L_{N}} E_{N}(\boldsymbol{u})$, where $E_{N}^{\log }(\boldsymbol{u}):=\frac{1}{L_{N}} \sum_{1 \leqslant n \leqslant N} \frac{1}{n} \delta_{S^{n-1}} \boldsymbol{u}$
- If we fix $\frac{1}{d+1}<\beta_{d}<\beta_{d}^{\prime}<\frac{1}{d}, 1<\beta_{0}<\beta_{0}^{\prime}<2$ then $E_{N}(\boldsymbol{u})$ is uniformly close to ν_{d} for $s_{m+1}^{\beta_{d}} \leqslant N \leqslant s_{m+1}^{\beta_{d}^{\prime}}$ (and m large enough).
- For parameters $\varepsilon>0,1 \leqslant D_{1}<D_{2}$ we show that $D_{1}(1-\varepsilon) \sum_{D_{1} \leqslant d \leqslant D_{2}}\left(\frac{1}{d}-\frac{1}{d+1}\right) \nu_{d}+\alpha \rho$ is a logarithmic Furstenberg system.
- In this latter Furstenberg systems we see D_{1}-independence, then, once more, a weak limit passage yields a Furstenberg system of iid type.

Logarithmic Chowla conjecture

\boldsymbol{u} satisfies logarithmic Chowla conjecture along a subsequence - proof:

- $E_{N}^{\log }(\boldsymbol{u})=\frac{1}{L_{N}} \sum_{1 \leqslant n \leqslant N-1} \frac{1}{n+1} E_{n}(\boldsymbol{u})+\frac{1}{L_{N}} E_{N}(\boldsymbol{u})$, where $E_{N}^{\log }(\boldsymbol{u}):=\frac{1}{L_{N}} \sum_{1 \leqslant n \leqslant N} \frac{1}{n} \delta_{S^{n-1}} \boldsymbol{u}$
- If we fix $\frac{1}{d+1}<\beta_{d}<\beta_{d}^{\prime}<\frac{1}{d}, 1<\beta_{0}<\beta_{0}^{\prime}<2$ then $E_{N}(\boldsymbol{u})$ is uniformly close to ν_{d} for $s_{m+1}^{\beta_{d}} \leqslant N \leqslant s_{m+1}^{\beta_{d}^{\prime}}$ (and m large enough).
- For parameters $\varepsilon>0,1 \leqslant D_{1}<D_{2}$ we show that
$D_{1}(1-\varepsilon) \sum_{D_{1} \leqslant d \leqslant D_{2}}\left(\frac{1}{d}-\frac{1}{d+1}\right) \nu_{d}+\alpha \rho$ is a logarithmic Furstenberg system.
- (*) $D_{1} \sum_{d \geqslant D_{1}}\left(\frac{1}{d}-\frac{1}{d+1}\right) \nu_{d} \in V_{S}(\boldsymbol{u})$.
- In this latter Furstenberg systems we see D_{1}-independence, then, once more, a weak limit passage yields a Furstenberg system of iid type.

Logarithmic Chowla conjecture

\boldsymbol{u} satisfies logarithmic Chowla conjecture along a subsequence - proof:

- $E_{N}^{\log }(\boldsymbol{u})=\frac{1}{L_{N}} \sum_{1 \leqslant n \leqslant N-1} \frac{1}{n+1} E_{n}(\boldsymbol{u})+\frac{1}{L_{N}} E_{N}(\boldsymbol{u})$, where $E_{N}^{\log }(\boldsymbol{u}):=\frac{1}{L_{N}} \sum_{1 \leqslant n \leqslant N} \frac{1}{n} \delta_{S^{n-1}} \boldsymbol{u}$
- If we fix $\frac{1}{d+1}<\beta_{d}<\beta_{d}^{\prime}<\frac{1}{d}, 1<\beta_{0}<\beta_{0}^{\prime}<2$ then $E_{N}(\boldsymbol{u})$ is uniformly close to ν_{d} for $s_{m+1}^{\beta_{d}} \leqslant N \leqslant s_{m+1}^{\beta_{d}^{\prime}}$ (and m large enough).
- For parameters $\varepsilon>0,1 \leqslant D_{1}<D_{2}$ we show that $D_{1}(1-\varepsilon) \sum_{D_{1} \leqslant d \leqslant D_{2}}\left(\frac{1}{d}-\frac{1}{d+1}\right) \nu_{d}+\alpha \rho$ is a logarithmic Furstenberg system.
- (*) $D_{1} \sum_{d \geqslant D_{1}}\left(\frac{1}{d}-\frac{1}{d+1}\right) \nu_{d} \in V_{S}(\boldsymbol{u})$.
- In this latter Furstenberg systems we see D_{1}-independence, then, once more, a weak limit passage yields a Furstenberg system of iid type.
Remark: Note that (*) DISPROVES Frantzikinakis-Host's conjecture!

Question

Question: Can we find a Furstenberg system for some $\boldsymbol{u} \in$ MRT which is a (non-trivial) direct product of a Bernoulli and a nilpotent system? (N. Frantzikinakis, F. Richter).

Thank you!

[^0]: ${ }^{1}$ Here: $Z_{0}:\{0,1\}^{\mathbb{Z}} \rightarrow\{0,1\}, Z_{0}\left(\left(y_{n}\right)\right)=y_{0}$.

[^1]: ${ }^{1}$ Here: $Z_{0}:\{0,1\}^{\mathbb{Z}} \rightarrow\{0,1\}, Z_{0}\left(\left(y_{n}\right)\right)=y_{0}$.

[^2]: ${ }^{1}$ Here: $Z_{0}:\{0,1\}^{\mathbb{Z}} \rightarrow\{0,1\}, Z_{0}\left(\left(y_{n}\right)\right)=y_{0}$.

[^3]: ${ }^{1}$ Here: $Z_{0}:\{0,1\}^{\mathbb{Z}} \rightarrow\{0,1\}, Z_{0}\left(\left(y_{n}\right)\right)=y_{0}$.

[^4]: ${ }^{2} \boldsymbol{u}$ is totally aperiodic.

[^5]: ${ }^{2} \boldsymbol{u}$ is totally aperiodic.

[^6]: ${ }^{2} \boldsymbol{u}$ is totally aperiodic.

[^7]: ${ }^{4}$ In fact, totally aperiodic.

[^8]: ${ }^{\text {a }}$ Under the isomorphism, the stationary process $\left(Z_{n}\right)_{n \in \mathbb{Z}}$ corresponds to $\left(F_{d} \circ A_{d}^{n}\right)_{n \in \mathbb{Z}}$, where $F_{d}\left(x_{d}, \ldots, x_{0}\right)=e^{2 \pi i x_{0}}$.

[^9]: ${ }^{5}$ I.e. Chowla conjecture fails for MRT class by a result of Matomäki, Radziwiłł and Tao, but it holds along a subsequence.
 ${ }^{6}$ More than that: For each configuration, its ε-nbhd appears with positive upper density on u.

[^10]: ${ }^{5}$ I.e. Chowla conjecture fails for MRT class by a result of Matomäki, Radziwiłł and Tao, but it holds along a subsequence.

[^11]: ${ }^{5}$ I.e. Chowla conjecture fails for MRT class by a result of Matomäki, Radziwiłł and Tao, but it holds along a subsequence.
 ${ }^{6}$ More than that: For each configuration, its ε-nbhd appears with positive upper density on \boldsymbol{u}.

