Expanown, dweschlity, party (jount w/ Mars Radquatt)
Moturation
Estmating correlations - basce poblem m analytec NT

$$
\frac{1}{x} \sum_{n \leqslant x} a(n) b(n+h) \text { as } x \rightarrow \infty
$$

Lourrle function
Fine multeplecative structere" of $\mathbb{Z} \rightarrow \lambda(n):=(-1)^{\Omega(n)}$

How hard are these questurs?

$$
\frac{1}{x} \sum_{n \leq x} \lambda(n) \lambda(n+1)=o(1)
$$

is gean and vey hand (Cloula's congeitane m degree 2)
\cdots whereas $\frac{1}{x} \sum_{n \leqslant x} \lambda(n)=0(1) \Longleftrightarrow$ Preme Number Thene

2015 Matomáhu-Radzurtt
$\lambda(n)$ averages to O over moot shent entervals

$$
\frac{1}{N H} \sum_{N<x \leqslant 2 N}\left|\sum_{x<n \leqslant x+H} \lambda(n)\right|=0(1) \quad \begin{gathered}
\text { proveded tat } H \rightarrow \infty \\
\text { as } N \rightarrow \infty
\end{gathered}
$$

Tas Geong Matomain-Radzurtt)

$$
(*) \quad \frac{1}{\log x} \sum_{n \leqslant x} \frac{\lambda(n) \lambda(n+1)}{n}=0(1)
$$

Fust step of Toi's puof?
(*) Veduces to $\frac{1}{x \mathcal{L}} \sum_{n \leqslant x} \lambda(n) \sum_{\substack{p \in \mathbb{P} \\ p \rightarrow n}} \lambda(n+p)=0(1) \quad(P$ some set of promes,

$$
\begin{aligned}
& \left(P_{\text {some sot of }}=\sum_{p \in P} /{ }_{P}\right)^{2}
\end{aligned}
$$

So, question: how to replace pin by weyht $1 / p$
Tad's way: ヨ set P for when this makes utile deffrence
(Why? entropy cexhaustion of mutual information)
Another way?
A prime dweschlity graph
virtues $V=\{N+1, \cdots, 2 N\}$
edges $E=\{\{n, n+p\}, p \in P, p \mid n, n, n+p \in V\}$

equivalent to graph consulered by

$$
M-R-T \text { II, Tao }
$$

"it may be possible to estimate expressions [...] by establishing some sort of expander graph property." "Unfortunately we were
unable to establish such an expansion property, as the [...] standard methods of establishing expansion [do not] work."
(some sort of)
Expander graph property?
= property of spectrum of an conservator on functions $f: V \rightarrow \mathbb{C}$
\approx "random walls equidetronito quedly"
what operator?
Edge are shot; cum for "string local expansion a.e." What bound do we want?

$$
\text { eyenvalues }=o \text { (average degree }) \quad=\mathcal{L}=\sum_{p \in p}^{1 / p}
$$

Adjacency operator Ad

Adjacency operator Ares. some, lent for graph

We defene

$$
A:=A C_{\Gamma}-A d_{\Gamma}
$$

must still exclude some vertues (e.g. those of vey hyh degree) So, weill work with a restrutions A_{1}

MAIN THM. Let $P \subset\left[H_{0}, H\right]$ a et of primes
A as abcue

$$
\mathcal{L}=\sum_{p \in p}^{1 / p}
$$

$$
\begin{array}{r}
\text { Arsume }\left(\log \left(H_{0}\right) \geqslant(\log +1)^{2 / 3+\varepsilon}\right. \\
H \leqslant e^{\sqrt{(\log N) / L}}
\end{array}
$$

Then

$$
\begin{aligned}
& n \\
& \text { s.t. }
\end{aligned}
$$

every eyenalue of $A_{1} x$ is $O(\sqrt{L})$
truinal bound: $O(\mathcal{L})$
So this is
O(Ramanejan)

Cor.

$$
\frac{1}{\log x} \sum_{n \leqslant x} \frac{\lambda(n) \lambda(n+1)}{n}=O\left(\frac{1}{\sqrt{\log \log x}}\right)
$$

whereas Tao had $\log \log \log \log x x^{-\alpha}$ and Tas-Teraciounens nod $(\log \log \log x)^{-\alpha} \quad \alpha>0$

$$
\begin{aligned}
& \frac{1}{x} \sum_{x<n \leq 2 x} \lambda(n) \lambda(n+1)=0(1) \\
& \text { at ale }
\end{aligned}
$$

at comment all scales, with stronger bounds than in Tas-Terarainen
Stronger Cor: For $I_{1}=I_{1}(x), I_{2}=I_{2}(x)$ enterals, Cor For any k,

$$
\left.\frac{1}{\log x} \sum_{\frac{x}{w}<n s x} \frac{\lambda(n) \lambda(n+1)}{n}=O_{\varepsilon}\left(\frac{\sqrt{s_{1} s_{2}}}{\log \lg x}\right) \quad \frac{1}{x} \sum_{\substack{x<n \leqslant 2 x \\ \\ \text { where } s_{i}=\min \left(I I_{i} \cdot 1\right) \sqrt{\log \lg x)}}} \lambda(n+1)=O\left(\frac{1}{\left(\lg \lg x x^{2}\right.}\right]^{\frac{3}{2}}\right)
$$

anceen coloss of proof
step 0: \exists a laye eyenvalue $\Rightarrow \exists$ mary lage egenalues (because lerality)
\Rightarrow trave $\operatorname{Tr}^{2 l \mid}$ as laye
 of lenger $2 k$. (even for moderato k)

Leoge weyth in $T(0,1)$ menue edge weylts in T^{\prime} (1/p) cancellation

Step 2:
Avoid early recurrences $\left(p_{i} \cdots p_{i x p_{i}} \cdots p_{i}\left(1 p_{i}\right)\right.$
with i ti small by memory for X all $n \in N$ that came them
That's a small set: cory
That set is well-distrbutued: hour! develop Generalyed Brim's sever C so enatwe tel get cancellation

MAIN PART OF PROOF: for conditions mo x comported; prevent combinatorial explown using Rota's crov-at tans
Bound \# of paths with no early recurrences and fo wor-repeated primes, and small weight of many i are "ba\&" (i.e,, $p_{i}\left\langle n_{i}\right.$)
If $p_{i}=p_{i}$ and i, i ore " $800 \theta^{\prime \prime}$ ", then clearly

$$
p_{i} \mid \varepsilon_{i+1} p_{i+1}+\cdots+\varepsilon_{i} p_{i}
$$

(system of deverelaty relations)

We consular the shape of a walk
shape: $(\vec{\imath}, \vec{\sigma}) \quad \vec{\sigma}=\{-1$, i te
We squill sun acer all wale of the
Example:

We soil sun er wale of teat
$1 \subset\{1, \cdots, 2 k\}$ "Ct" undine z $p_{i} \mid n_{i}$

Sketch of purf
Let \sim be an equiv. relation on $\{1, \cdots, 2 k\}, \overrightarrow{6}$ a tuple $\in\{-1,1\}^{2 k}$ $(\sim, \overrightarrow{6})$ undures a word

The undues not surviry reductu are colored yellaw
graph $g_{N}:=$ vertesas = won-yellow equalue classe
edges: belween $\left.i_{i}\right\}$ and $\left.C_{i}\right]$
s.t. eny $i_{1} j<i_{2}$ or $i_{2}<j<i$, $\cos _{\text {yellow }}$

Example:

$$
\begin{aligned}
\sim= & \{\{1,4\},\{2,5\},\{3\},\{6\}\} \\
\vec{\sigma}= & (1,-1,1,1,1,-1) \\
& \left.x_{(b)} x_{(2)}^{-1} x_{z a} x_{(3)} x_{[2)}\right)_{(6)}^{-1}
\end{aligned}
$$

Lemna Let (\sim, \vec{b}) be a shave of leyth $2 k$
Let $g=g_{\sim}$
Pantilu non-jellow vertues of g_{\sim} unto red and shle so that Giffue is cometed Let $x_{(j)}$ a fomal varable for eut red $[j]$

$$
\begin{aligned}
& v(i):=\sum_{\substack{<i}} \sigma_{j} x_{[j]} \text { for } 1 \leq i \leq 2 k \\
& \text { Ejjered } \\
& \text { the spare } V_{\text {spaned }} \text { by }
\end{aligned}
$$

Then the spareVspaned by

$$
\left.V\left(i_{2}\right)-v\left(i_{1}\right) \text { with }\left[i_{1}\right]=i_{i 2}\right] \text { oblue }
$$

equals the spare W spamed ly

$$
\begin{aligned}
& \text { uals the spare } W \text { spamer ey } \\
& \left.v\left(i_{2}\right)-v\left(i_{0}\right) \quad \text { with } i_{i_{1}}\right]=\left(i_{2}\right\} \in \text { blere }
\end{aligned}
$$

Easy lnear aget Lemn
Let A be as $n \times m$ matix

- Ney now has at last one -no columnn non-zerones nas $7 K$ uon-O entines

Then rante $A \geqslant \frac{n}{k}$

Example

because
row in M :

Puop Let $(\sim, \vec{b}), g_{u}, v$ be as before. Let $\left.(i), \vec{\sigma}^{\prime}\right)$ be the redeued shape Assume $<K$ despant revencants in $\left(\sim^{\prime}, \vec{\sigma}^{\prime}\right)$ (i.e. con't have Then $\operatorname{dem} W \geqslant \frac{S}{k}-1$ whi $i_{\nu} \sim i_{\nu} \forall v$ where $s=\#$ of indiexe $1 \leq j \leq 2 k$ s.t.

$$
\begin{aligned}
& \overrightarrow{6}) c i_{1} \cdot e \cdot c i_{r}<c_{r} \leqslant k \\
& 1 \leqslant i_{1}<i_{1} \leq i_{2}<i_{2}<-\cdots \leqslant
\end{aligned}
$$

- $\exists i_{r}<j<i_{\nu}$ wtt $j \alpha i_{r}$
j is bleve and $j+1$ is red

Lea of If
s counts red block
$<k$ deyoent revenorts $\rightarrow<k$ of these blocks hove trial sums.
each bed letter appear
us <k blocs
So: use lay lender algebra lame

So: want to chore blue $c V$ so that g ibblue es connected and s is as laye as porsible
Draw an arrow form $[i]^{\prime}$ to $[i+1]^{\prime}$ in g for ear ${ }^{\text {, }}$ an an oo (draw each a moo only one)
For $S c V, \vec{\partial} S:=\left\{v \in V S: \exists v^{\prime} \in S\right.$ and sum $\left.C 26^{\circ}\right]$ to $\left[1^{\circ}\right]$
So choose blues $c V$ so that $a \quad v i v$. Then $s \geqslant|\partial \vec{S}|-1$.

How to choore connected blue cV s.t. $\vec{\partial}$ blue us large

Graph theong result
(essentially Kleitman-West '91; followed Storer '91,
Payan-Tchuente-Xuong '84,
Griggs-Kleitman-Shastri '89;
see also Gravin '11,
Bankevich-Karpov '12, Karpov '13)
For ary connerted graph with $\geqslant n$ vertues of deyree >2,

The undiverted

\exists spamniy tree $\geqslant \frac{n}{4}+2$ leaves.

Good!
But what happens of n es small, ie., f few virtues v in G have degree >2?
degree 1 means:
$w \vee w \quad w^{-1} v \vee \vee w^{-1}$
degree 2:
\checkmark always followed and precedes by w Cor
same with ω_{1}, ω_{2}
\rightarrow wovdswitb few virtues of degree >2 can be described simply

\longrightarrow Ser such wards
cmeaniz

$$
O(1)^{k}(2 k)^{k n}
$$

as opposed k^{k})

What about the pot of the walt that got reduce?

() ())

still have to describe equalene cans of each $($ of new, good. If not:

$$
k=c_{0} \log H, \quad \ell=\frac{\log H_{0}}{\log 2 \lg 2 k}, k \frac{v \sqrt{\operatorname{tog} H_{0}}}{\log 2 k}
$$

Chare your parameters:

What next?

