MONOCHROMATIC ARITHMETIC PROGRESSIONS IN BINARY WORDS ASSOCIATED WITH PATTERN SEQUENCES

Bartosz Sobolewski (Jagiellonian University in Cracow)

Abstract: Let $e_{P}(n)$ denote the number of occurrences of a pattern P in the binary expansion of $n \in \mathbb{N}$. In the talk we consider monochromatic arithmetic progressions in the class of words $\left(e_{P}(n) \bmod 2\right)_{n \geq 0}$ over $\{0,1\}$, which includes the Thue-Morse word \mathbf{t} (for $P=1$) and a variant of the Rudin-Shapiro word \mathbf{r} (for $P=11$). So far, the problem of exhibiting long progressions and finding an upper bound on their length has mostly been studied for \mathbf{t} and certain generalizations $[1,2,3]$. The main goal of the talk is to show analogous results for \mathbf{r} and some weaker results for a general pattern P. In particular, we prove that a monochromatic arithmetic progression in \mathbf{r} of difference $d \geq 3$ starting at 0 has length at most $(d+3) / 2$, with equality infinitely often. We also compute the maximal length of monochromatic progressions of differences $2^{k}-1$ and $2^{k}+1$.
[1] I. Aedo, U. Grimm, Y. Nagai, P. Staynova, On long arithmetic progressions in binary Morse-like words, preprint, https://arxiv.org/abs/2101.02056 (2021), 23 pp.
[2] J. F. Morgenbesser, J. Shallit, T. Stoll, Thue-Morse at multiples of an integer, J. Number Theory 131 (2011), no. 8, 1498-1512.
[3] O. G. Parshina, On arithmetic index in the generalized Thue-Morse word, in: S. Brlek, F. Dolce, C. Reutenauer, É. Vandomme (eds.), Combinatorics on Words, Springer, Cham, 2017, 121-131

